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Abstract 

Transposable elements (TEs) are major genomic components in most eukaryotic genomes and play an important role 
in genome evolution. However, despite their relevance the identification of TEs is not an easy task and a number of 
tools were developed to tackle this problem. To better understand how they perform, we tested several widely used 
tools for de novo TE detection and compared their performance on both simulated data and well curated genomic 
sequences. As expected, tools that build TE-models performed better than k-mer counting ones, with RepeatModeler 
beating competitors in most datasets. However, there is a tendency for most tools to identify TE-regions in a frag-
mented manner and it is also frequent that small TEs or fragmented TEs are not detected. Consequently, the identifi-
cation of TEs is still a challenging endeavor and it requires a significant manual curation by an experienced expert. The 
results will be helpful for identifying common issues associated with TE-annotation and for evaluating how compara-
ble are the results obtained with different tools.
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Introduction
The vast majority of eukaryotic genomes contain a high 
number of repetitive DNA sequences. These sequences 
can be broadly classified as tandem repeats or inter-
spersed repeats. Tandem repeats are short sequences 
with a length up to a few dozen bases that lie adjacent 
one to another and are approximate copies of the same 
pattern of nucleotides. Similarly, interspersed repeats are 
homologous DNA sequences that can be found in mul-
tiple copies scattered throughout a genome and their 
lengths can vary immensely from a hundred nucleotides 
up to more than twenty-thousand nucleotides. Most of 
these interspersed repetitive sequences found in genomes 
originated in the proliferation of transposable elements.

Transposable elements (TEs) are mobile genetic 
sequences possibly related to viral components that 
have evolved the ability to increase their abundance in a 
genome by making copies of themselves. The fraction of 
TEs in a genome can vary widely and can represent more 

than 80% of plant genomes [28]. To put into perspective 
how common they are, if we consider a well-studied case, 
such as the human genome, the annotated protein-cod-
ing genes represent only a very small fraction of approxi-
mately 5% of all the sequences, meanwhile TEs can make 
up to about 68% of the sequences [5].

Genomes and TEs have coevolved similarly to a host-
parasite relationship and this led the genomes to develop 
multiple mechanisms to suppress TE activity as they can 
compromise the integrity of the genome and can cause 
deleterious mutations. Consequently, there is a constant 
evolutionary arms race between transposon activity 
and the host genome trying to suppress their prolifera-
tion [15]. Despite the parasitic nature of TEs, they play 
a fundamental role in genome evolution, contributing to 
plasticity, shaping, and altering the architecture of the 
genome. TEs contribute to gene regulatory networks as 
their activity can disrupt regulatory sequences modifying 
gene expression by altering chromatin structure, behav-
ing as enhancers or promoters, or, when transcribed as 
part of a larger transcript, creating new transcript iso-
forms altering splicing and mRNA stability [18]. There are 
multiple examples of TEs that have been domesticated 
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and proteins derived from them which were co-opted, 
such as the RAG1 gene from the somatic V(D)J recombi-
nation in humans and the retrotransposons that maintain 
the telomeres in Drosophila. RNA-mediated retrotrans-
position of transcribed genes is also a source for gene 
duplications that can lead to novel traits [17].

Historically, TEs were considered useless selfish 
sequences and their influence on genes and genomes was 
often dismissed [21]. It was not until the last two decades 
that they started to be considered as major components 
of genomes and important players of genome evolution, 
but due to the difficulties posed by their repetitive nature 
their annotation and role in genetic studies still continues 
to be neglected [3].

The correct identification of TEs is an important step in 
any genome project since their repetitive nature can cre-
ate difficulties during de novo genome assemblies, break-
ing the continuity of contigs as a result of the same reads 
mapping to multiple loci [25]. They can also hinder anno-
tation by creating conflicts with gene prediction pro-
grams if they can be found inside a host gene, carry part 
of a host gene when replicating, become pseudogenes, or 
contain spurious ORFs.

There are multiple tools for TE-detection but there are 
no clearly defined pipelines or software tools that could 
be considered as standard, as there are no clear metrics 
to compare the results obtained from each software [12]. 
Most tools also rely on a high copy number of elements 
for correct identification and are usually tested in organ-
isms that have large genomes and a high abundance of 
TEs.

The identification of TEs can be really daunting and a 
time-consuming endeavor for the amount of data that 
needs to be processed and compared and the challenges 
inherent to their complex nature. TEs are extremely 
diverse, they comprise multiple classes of elements that 
can vary immensely in sequence, length, structure, and 
distribution [31]. Some TE families found in eukaryotic 
genomes can be very old with a majority of inactive cop-
ies due to accumulation of mutations or fragmentation 
during the insertion process. This means that remains 
of antique copies from a family can be very divergent 
from active TEs, making the detection of the remnants of 
decayed copies or the definition of consensus sequences 
a real challenge that is hindered by the great variability of 
TEs within the same family. The proliferation of TEs can 
also result in the generation of nested TEs and some fam-
ilies show a clear preference for jumping into other TEs 
that act as hotspots for insertion [8], making the detec-
tion and correct annotation of them even more difficult.

There are well curated TE databases, such as RepBase 
[1] or Dfam [14], with libraries of consensus sequences. 
A homology-based approach relies on the TE sequences 

from these libraries which are then mapped against 
the studied genome. To identify new TEs a de novo 
approach is used and there are abundant software alter-
natives which rely on different strategies ranging from 
structural information, periodicity, k-mer counting, or 
repetitiveness, among others [19]. When a new species is 
sequenced, a strategy which uses only information from 
curated databases is not enough and it is necessary to use 
a de novo strategy to identify novel families and species-
specific TEs.

In this work we compare TE detection software which 
are widely used by researchers and we assess their per-
formances on genomes with well curated TE annota-
tions. We ran a number of de novo TE detection software 
packages on simulated sequences and genome sequences 
and then compared and evaluated their performance in 
detecting a wide variety of divergent TE families. A par-
ticular scenario that we tried to consider is the detection 
of transposons in smaller genomes of around a hundred 
million bases. In all cases the software for identification 
of TE rely on the presence of a large number of elements 
of the same family and that is usually not common in 
smaller genomes where a lower number of copies of TEs 
is expected.

Methods
Datasets
Genomic data with annotated TEs were downloaded 
from the UCSC Genome Browser database [11]. The TE 
annotation provided by UCSC Genomes was obtained 
from mapping TEs from the RepBase database [1] against 
each genome using RepeatMasker [29]. The sequence 
data sets we used varied from 46.7 Mb for the human 
chromosome 21 and 137.5 Mb for the fruit fly genome 
(see Table 1).

Simulated data
We used a Python script to simulate an ideal scenario 
where the composition, coordinates, and divergence of all 
the TEs are already known. This script takes input from a 
configuration file for GC content, TE sequences, number 
of copies, expected divergence (mutations and indels), 
percent of fragments, and nesting. The script starts by 
simulating a random sequence of a predefined length 
and a GC content that constitutes the base sequence 
where TEs are going to be inserted. Then it obtains the 
name of each TE and the number of copies from the 
configuration file and random positions are chosen and 
assigned to each TE. In the next step, TE sequences are 
loaded from a library and the information about diver-
gence and fragmentation is taken into account to gener-
ate random mutations and fragments that are inserted 
into the base sequences. The last step takes all of this 
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information to generate a fasta file with the whole new 
sequence with TEs and a GFF file with all the coordi-
nates and relevant information. For the simulated dataset 
we used a base sequence of 40 Mb with the GC content 
similar to the human genome (42%) and inserted 60 Mb 
of TE-sequences from 20 different families downloaded 
from the Dfam database [14]. Although the divergence 
threshold for individual copies inserted into simulated 
genome was set to 30%, the majority of the sequences 
were between 90 and 95% identical to the cognate TE 
consensus sequences (see Fig.  1). Detailed information 
on inserted sequences is provided in Table S1.

Software
In this work we compared strategies for de novo detec-
tion of TEs using k-mer based tools and programs that 
construct TE-models. We tested three k-mer counting 
tools: Red, P-Clouds version 0.9, and phRAIDER. Due to 
the nature of the algorithms employed by k-mer count-
ing software, these tools are extremely fast and usually 
don’t require much computational power. Neverthe-
less, they usually require a big amount of RAM to store 
data structures, so they may not scale up well with large 
genomes. Red identifies candidate repetitive regions giv-
ing them a score, then processes these results using signal 
processing and the second derivative. These filtered data 
are used to train a Hidden Markov Model that scans the 
genome for candidate TEs. As described by the author, 
it is a novel repeat discovery system that trains itself 
automatically on an input genome [9]. P-Clouds counts 
oligonucleotides, then arranges them into clusters of 
“probability clouds” that are related oligonucleotides that 
occur as a group more often than expected by chance. 
Then it annotates the genome by finding stretches with 
a high density of oligos present in these “probability 
clouds” [10]. The premise of phRAIDER is to use spaced 
seeds to specify match patterns, i.e., to permit the search 
of substrings allowing mismatches in certain positions. 
Then it scans the genome searching for highly frequent 
seeds and how they overlap [27]. The biggest limitation of 
these tools is the fact that they don’t make any attempt to 
classify found repeats. Moreover, there is no information 
provided on relation between the detected individual ele-
ments and no consensus sequences are computed.

We also compared three model-builders: RepeatScout 
version 1.0.6, REPET (TEdenovo pipeline) version 2.5, 
and RepeatModeler version 2.0. RepeatScout uses high 
frequency seeds and extends each seed to a progressively 
longer consensus sequence, following the dynamically 
inferred alignments between the consensus sequence 
and its occurrences in the genome. The alignment score 
encourages boundaries shared by some but not neces-
sarily all alignments; it uses a standard SW-algorithm to 
extend until n-iterations fail to improve the score [23]. 
REPET is a package consisting of two pipelines, one for 
detection of TEs: TEdenovo, and another for their anno-
tation: TEannot [6, 24]. Both of these pipelines are fully 
configurable and each step can be parametrized. The 
TEdenovo pipeline by default starts self-comparison of 
the input genome with BLASTER, a modified version 
of BLAST. Then it clusters the high scoring pairs using 
three tools: RECON, GROUPER, and PILER, grouping 
closely related TE sequences. Finally, it performs a mul-
tiple alignment using MAFFT or MAP with the aim of 
having a consensus sequence for each TE family. Here, we 
are interested in the ability of the software to detect TEs, 
so we used only the TEdenovo pipeline. Finally, Repeat-
Modeler is a pipeline that uses as an input the outputs of 
three other software, namely RECON, RepeatScout, and 
Tandem Repeats Finder. Additionally, it uses LTRHarvest 
or LTRretriever for LTR-TE detection [7]. It should be 
noted that RepeatModeler contains an optional module 
(option -LTRStruct) that enables clustering redundant 
LTR models. However, since we used only default param-
eters, this step was skipped in our analyses. RepeatScout, 
RepeatModeler, and REPET all give as a final result a fasta 
file with a consensus sequence for each type of TEs they 
could identify. Afterwords, we need to map back these 
consensus sequences to the genome to identify individual 
copies of TEs and get their coordinates. For this step we 
used the popular tool RepeatMasker, version 4.1.0 [29], 
using the three tools’ outputs as libraries to screen the 
genomes for TEs.

Another tool used for detecting simple repeats 
was Tandem Repeat Finder (TRF) version 4.09 [2], a soft-
ware which models tandem repeats using a probabilistic 
model. We used it to filter out simple repeats obtained 
by the k-mer counting tools and also to assess the ability 

Table 1 Datasets used for testing the TE de novo detection tools

Dataset Genome version Sequences Length TE-fraction

Human genome GRCh38/hg38 p12 Chromosome 21 46.7 Mb 36.74%

Zebrafish GRCz11/danRe 11 Chromosome 1 59.6 Mb 46.58%

Fruit fly BDGP Release 6 Whole genome 137.5 Mb 17.55%

Simulated data n/a Simulation 100.1 Mb 60.00%
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of model-builders to cope with simple sequence repeats. 
TRF was run with default parameters on all the sequences 
analyzed and the results obtained were merged when an 
adjacent or overlapping annotation was reported. These 
results were converted into a GFF file for easing further 
analysis.

Pipeline
All the software were tested with default parameters 
as we intended to compare the typical performance of 
each tool without tuning their optional parameters (see 
Fig. 2). K-mer counting methods are expected to find all 
the high frequency k-mers, including simple repeats and 
interspersed repeats. For k-mer counting software after 
getting the results we ran Tandem Repeat Finder (TRF) 
with default parameters to filter out tandem repeats. The 
model-builders usually include some steps for filtering 
simple repeats and frequently make use of TRF, so this 
step was not replicated with these software.

The type of results produced by each set of tools is also 
quite different due to the different strategies used. K-mer 
counting tools return the coordinates in the genome with 
the regions where high frequency k-mers were found, 
meanwhile model-building software returns the consen-
sus sequences of the TE candidates found as a fasta file. 
So for the latter set of tools we mapped back the con-
sensus sequences against the original sequences using 
RepeatMasker, running it with default parameters. The 
results obtained from all the different tools were trans-
formed to GFF format for further processing.

Then GFF files were sorted by coordinates and imme-
diately adjacent, overlapped, or internal coordinates 
were merged as one, as the main idea is only the identi-
fication of transposon sequences. This step is necessary 
particularly in k-mer counting software which have the 
tendency to annotate many overlapping and fragmented 
repeats. For all the datasets tested we have as a reference 
the annotations downloaded from the UCSC Genomes 
database.

TE-models’ comparison
TE-models generated by model-building software on 
simulated data were compared to original TE-families 
using blastn (version 2.10.1+) with default parameters.

Analysis
With the results of TE detection obtained from each 
software we created GFF files that were then compared 
against the original files from UCSC database with 
RepeatMasker mapping results. A custom Python script 
was used to obtain the overlapping regions of two GFF 
files and where there are differences in the annotation, it 
allowed us to compare the coordinates of the reference 
and the ones obtained by the TE de novo software. This 
way of evaluating the data is useful in order to create a 
confusion matrix that can be used as input for a binary 
classifier test that allows us to compare the performance 
of different software against a reference. When the ref-
erence annotation and the new annotation agree on the 
coordinates, these bases are counted as true positives, 

Fig. 1 Landscape plot of simulated TE insertions
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or if nothing is annotated in both, these bases count as 
true negatives (Fig.  3). If the new annotation has bases 
not covered by the reference annotation, we consider 
them as false positives, and similarly if annotations in the 
reference are missing in the new annotation, these are 
counted as false negatives (see Fig. 3).

With this kind of data we have a binary classification 
problem, where each category can be classified using a 
confusion matrix. There are multiple tests to evaluate and 
compare the results obtained by a binary classifier which 
make use of a confusion matrix data and one of the most 
commonly used methods is the Matthews Correlation 

Coefficient (MCC). The MCC has the advantage that it 
uses all four quadrants of a confusion matrix considering 
the proportions of each class and requires that in both 
classes negative and positive elements are correctly clas-
sified, performing well even when using imbalanced data 
and when one class is underrepresented [4]. The MCC 
evaluates the results obtained from a prediction, as in this 
case the TE de novo software TE candidates, against the 
known annotated data. The values of MCC range from 
− 1 to + 1, where a value of − 1 is obtained when all the 
predictions are wrong, 0 when results are not better than 
random guessing, and 1 where all predictions are cor-
rect. In this work we used the MCC as a measure of the 
performance obtained from the different software tools. 
Additionally, we developed several R scripts for plotting 
GFF coordinates which visually compare the annotations 
obtained from each tool.

Results
As mentioned above, the two groups of programs pro-
vide different types of results. While k-mer counting 
software provided a list of regions that are occupied by 
repetitive sequences, model-building software analyzed 
here returned sets of repeats’ models. These models can 

Fig. 2 Pipeline used for testing and comparing the performance of de novo detection tools

Fig. 3 Classification of the results obtained after comparing the 
reference annotation and the predicted TEs. We have TEs in the 
reference genome annotation and TE candidates as a prediction. 
Then comparing both they can be classified as false negatives (FN), 
true positives (TP), false positives (FP), or true negatives (TN)
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be next used to scan a genome and annotate individual 
repeats, including TEs. For this step, we used a popular 
program, namely RepeatMasker (see Methods section).

Model building
Three different programs were used to create TE-models 
for both real genomic data and simulated sequences. The 
results of the latter are the most informative as we knew 
the exact number of expected TE-families. Interestingly, 
all three programs generated more TE-models than we 
used for the simulation (see Table 2).

RepeatScout generated the smallest number of TE-
models (30) and only in few cases more than two models 
for a given TE-family: three for L1 and four for Polinton. 
However, it has a tendency to create homo-dimeric ele-
ments, for instance Copia, DIRS, HERVL (see Table S1). 
On the other extremum lies REPET, which created the 
highest number of models, although it failed to report an 
Alu model. This is a bit surprising since there were 730 
Alu insertions of a single sub-family (Alu Y). REPET not 
only generated the highest number of models but some 
of them were dimeric and hybrid. The latter were caused 
by a few nested repeats, for instance a Jockey nested in 

a Ngaro or a Tc1-Mariner nested in a HERVL. In gen-
eral, longer elements tend to give rise to several models 
by both RepeatModeler and REPET. For instance, 5.5 kb 
long L1 element is a source of six models in Repeat-
Modeler analysis and nine models in the case of REPET. 
Polinton, which is 18.5 kb, resulted in eight models in 
both RepeatModeler and REPET and four models in the 
case of RepeatScout (see Table  S1). Interestingly, some 
of these models overlap each other, suggesting that they 
could be merged during manual curation.

In our simulation, we “mutated” individual TE-copies 
up to 30 % divergence from the reference sequence and 
many of the individual copies were truncated at the 5′ 
end. In general, a consensus sequence recovery at the 
nucleotide level was very good, with the average sequence 
identity of models to their respective reference sequences 
at 97.3% (stdev = 3.76). However, many of TEs were bro-
ken by a given software into several models. Probably the 
best example is Polinton, based on which RepeatModeler 
and REPET created nine models each and none of these 
covered the whole Polinton sequence that was used in the 
simulation (see Fig. 4). The shortest transposon inserted 
into the simulated data was the 311 nucleotide long AluY 
element. The individual sequences were “mutated” to 
average 13% divergence from the reference sequence and 
67 of them were truncated at their 5′ end up to 30% of 
the sequence length. RepeatScout performed the best, 
returning a 308 nt long model with the sequence identi-
cal to the reference and just 3 nt missing from the 5′ end. 
Surprisingly, REPET didn’t report any models based on 
these sequences. Finally, RepeatModeler created three 
different models: one almost ideal with just a 5′ terminal 
guanosine missing and two others, a bit shorter but with 
extra eight and thirty-five nucleotides added to their 5′ 
end (see Table S1).

When analyzing the simulated data, one trend became 
clear, namely that on occasions multiple models are 

Table 2 Number of TE models generated by each software from 
a simulated sequence containing TEs of 20 different families (see 
Table S1 for detailed information). Please note that REPET failed 
to generate an Alu model

Software Number 
of models 
generated

RepeatScout 30

RepeatModeler 80

REPET 82

Number of TE families inserted in the simulated 
data

20

Fig. 4 Different models created for Polinton-1_DR transposon aligned against Dfam model DF0002823.2
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generated for the same TE and there are common pat-
terns observed for each software. A characteristic of 
RepeatModeler is that it tends to generate redundant 
models, with up to six to eight models for the long-
est TEs. This is also a common behavior observed with 
REPET, where many fragments were generated. Another 
interesting observation that only occurs with REPET is 
that in some models part of a nested TE was included 
into a model resulting in chimeric models. With Repeat-
Scout there is much less redundancy with the number of 
models, but again something unique happens and some 
of the reported models are total or partial duplicates of 
the original TE.

An example of different models generated for a DIRS 
TE of 5.6 kb which were particularly difficult to resolve is 
shown in Fig. 5. This particular TE RepeatModeler gener-
ated six different models of different lengths. These mod-
els are on average 15 % diverged at the sequence level. 
There were two models calculated by RepeatScout, one 
almost identical to the reference and another one almost 
twice the length of the original and consisting of a dupli-
cation leading to erroneous homodimer. Interestingly, 
the two copies of this homodimer are complementary to 
each other as they lie on opposite strands compared to 
the reference sequence. REPET reported four models in 
total. Two are relatively short, encompassing about one-
third of the reference sequence and partially overlapping 
in a head-to-tail orientation. Another model is a hybrid 
TE consisting of two overlapping fragments of DIRS ele-
ment in a head-to-tail orientation with a fragment of 
TRANSIB transposon. The fourth model closely resem-
bles the original TE but is truncated by about 240 nucleo-
tides at its 5′ end (see Fig. 5).

In Fig. 4 we present models generated for another TE, 
namely Polinton-1_DR [16]. The full-length transposon 
is 18.5 kb, including 350 bp terminal inverted repeats. All 
three software systems compared in our study reported 
few models for this TE but none of the models recovered 
the full length TE (see Fig. 4 and Table S1). Interestingly, 
both REPET and RepeatModeler generated similar close-
to-full-length models that are missing one of the inverted 
repeats, while RepeatScout’s longest model misses 
both inverted repeats. However, inverted repeats were 
reported as separate models by each of the program.

In the real data from model organisms, RepeatS-
cout created the highest number of models with almost 
three-thousand consensuses for zebrafish chromosome 
1 (see Table 3). This is in contrast to the simulated data 
where RepeatScout generated the least number of mod-
els. REPET lies on the other extreme of the spectrum 
with just 65 TE models for the human chromosome 21, 
including Alu model that was missing from the simulated 
data analysis. Interestingly, this chromosome is anno-
tated with almost 1000 different TE families. The smaller 

Fig. 5 Consensus sequences generated by each software for a single TE from the DIRS family. The length and position reflect the mapping to the 
TE, black dotted lines show the continuation of the same model, the orange segment represents a fragment coming from another TE (TRANSIB)

Table 3 Number of models generated by three software in 
real sequence analysis and number of TE-families annotated in 
publicly available data on the same sequences

Software Zebrafish 
chromosome 
1

Fruit fly genome Human 
chromosome 
21

RepeatScout 2919 2593 464

RepeatModeler 1779 686 428

REPET 342 557 65

Public annotation 875 219 979
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number of models generated for human data might be 
linked to the smaller sequence data compared to the two 
other datasets. However, based on the TE-annotation, 
the total length of TEs in the fruit fly genome is compara-
ble to the total length of TEs in human chromosome 21, 
24 MB versus 20 Mb, respectively. In general, the real data 
seem to harbor more versatile repertoire of TEs than our 
simulated data resulting in many more TE models (com-
pare Table 2 and Table 3).

To investigate this matter further, we compared TE 
models created by the software analyzed with TE fami-
lies annotated in the sequences used for the benchmark-
ing. We simply run RepeatMasker with the created TE 
libraries as a query. Interestingly, in all cases there were 
many consensus sequences (TE models) that didn’t pro-
duce any significant hits in the RepeatMasker analysis. 
This may suggest that there might still be undiscovered 
repeats in the analyzed data, although some of them 
could be false positive results (see Table 4). Interestingly, 
recent de novo analysis of the repetitive elements of the 
T2T-CHM13 assembly [20] revealed 49 novel repeat 
types [13] showing that even well annotated genomes 
may still harbor undefined repeats.

Individual repeats annotation
To get a better idea of the different results of the de novo 
annotation obtained by the six tools used, we plotted the 
coordinates of each one in tracks along with the refer-
ence annotation, as shown in Fig. 6. Simply by visualizing 
the results it is quite evident that there is a tendency to 
get a fragmented annotation when using k-mer counting 
tools, particularly P-Clouds and phRAIDER. Red uses 
a smoothing function to merge nearby high frequency 
k-mers, giving less fragmented results, as shown in Figs. 6 
and 7. As it was expected due to the methodology used, 
the best results for detecting transposons were obtained 
by software that calculate TE-models, but as it is shown 
more in detail in Fig. 7, most of the predictions are frag-
mented TEs, annotations without clear borders, or miss-
ing some smaller or incomplete elements.

For model-building software, in most cases Repeat-
Modeler got the best results, but RepeatScout obtained 
also comparable results. REPET failed in some scenarios 

and particularly with short divergent fragments (Alu ele-
ments). However, it must be noticed that it failed only 
in one of the twenty cases and performed quite well on 
a real data. One of the reasons could be that this soft-
ware was developed with the idea to be used with large 
genomes and here all the tests were run with sequences 
of around 100 MB. We compared the annotation results 
obtained using simulated sequences with known iden-
tities between TEs ranging from 60 to 100% and then 
compared the coverage of the annotation in relation to it, 
as is shown in Fig. 6. It is expected that TEs with higher 
identities are detected more precisely. Indeed TEs with 
a higher identity are better detected by all software and 
the differences seen are inherent to the performance of 
each tool. For k-mer counting software, Red performs 
significantly better than the rest, e.g. at 70% identity, Red 
detects approximately 85% of the TE regions. Meanwhile, 
P-Clouds detects about 60% and phRAIDER 25% (Fig. 8). 
The model-building software display a much better and 
uniform performance and are less affected by more diver-
gent TEs (Fig. 8). When we also consider the different TE 
orders annotated and the proportion of coverage for the 
TEs of each order, we observe that there’s no significant 
difference between them and all the software have a con-
sistent performance (supplementary material, Fig. S1).

We also analyzed how well computed libraries can 
detect individual TEs and masked genomic sequences. To 
do that, we run RepeatMasker with genomic sequences 
as queries and built by different software libraries as ref-
erences. In most cases RepeatScout libraries gave the 
results closest to the current expert annotation of cog-
nate genomic sequence (see Table 5). Interestingly, none 
of the libraries seem to work well with the human chro-
mosome 21 data masking only between 50 and 79% of the 
originally masked sequences. However, if we look at the 
number of annotated TEs, the situation is not looking as 
bad (see Table 6). This is probably due the fact that all the 
software used here produced libraries with rather frag-
mented models as compared to curated data (see Discus-
sion above).

Finally we evaluated the performance of each tool 
against the datasets using the Matthews Correlation 
Coefficient (Fig. 9). Among k-mer counting software run 

Table 4 General annotation of models built by analyzed software using RepeatMasker and cognate libraries. In the “Novel” column we 
list the number of models that didn’t produce any individual matches during RepeatMasker run

Software Zebrafish chrom. 1 Fruit fly genome Human chrom. 21

TEs SSR/Sat/rRNA Novel TEs SSR/Sat/rRNA Novel TEs SSR/Sat/rRNA Novel

RepeatScout 2343 152 424 1558 89 946 397 29 38

RepeatModeler 1670 30 79 582 30 74 411 14 3

REPET 331 5 6 510 42 5 31 32 2
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Fig. 6 Different tracks of the coordinates obtained from a de novo identification of transposons using six different software tools for detecting 
interspersed repeats. In the reference track, green blocks are transposons
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with defaults parameters Red outperformed P-Clouds 
and phRAIDER and this can be explained by the fact that 
Red merges nearby k-mers more frequently than the oth-
ers, giving less fragmented results. In model-building 
group RepeatModeler obtained the best results, although 
it is interesting to notice that RepeatScout that is part 
of RepeatModeler pipeline is faster than the latter but 

obtained almost as good results as the pipeline. However, 
it should be pointed out that RepeatModeler tries to clas-
sify calculated models into repeat families, something 
that RepeatScout does not. Hence, execution time dif-
ference is rather expected than surprising. REPET on the 
other hand was probably not the best tool for this type 
of analysis. REPET has a default configuration but also 

Fig. 7 Comparison of the fragmentation of results in a region of the human chromosome 21. In each track there are the predictions obtained from 
each tool and in green the reference. Notice how most of the results are usually incomplete or fragmented

Fig. 8 Coverage of TEs in simulated sequence in relation to their average identity. In k-mer counting software there’s a great drop in the detection 
of more divergent TEs, this behavior is not seen when using model-builders. RepeatModeler and RepeatScout results are almost identical and they 
are overlapped in this plot
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different tools can be added to the pipeline and each step 
is highly configurable, nevertheless, one of the downsides 
is that it can be very complex to configure and run for an 
unexperienced user.

Discussion
Presented here benchmark is not very optimistic but how 
does it measure against other similar studies? Unfortu-
nately, the comparison is not very easy. First of all, there 
were not many independent benchmarking tests perform 

in past [22, 26]. Although, usually some benchmarking 
were  presented with the original publication of a soft-
ware, they cannot be completely trusted as they might 
be tuned to a specific software. Moreover, each study 
includes different set of the software and we didn’t find 
any single paper that discussed the same six programs 
that we benchmarked here. Ou et al. employed five pro-
grams of which three (RepeatScout, RepeatModeler, and 
Red) were benchmarked by us as well. However, in this 
paper benchmarking was used to compare these soft-
ware with EDTA, a pipeline created by the authors and 
as such cannot be treated as an independent analysis. We 
found only one, truly independent benchmarking study 
but it was published over a decade ago and only Repeat-
Scout is a mutual software with our study [26]. Although 
RepeatModeler is most frequently compared software, 
surprisingly it is missing from Ou et al. analysis. Another 
difficulty is that each study used different data sets to 
evaluate de novo TE-detection software and surprisingly 
simulated data usually was not included. Similarly to our 
approach the datasets varied in size but none of the tools 
was tested on a sequence of gigabases scale. Nevertheless, 

Table 5 Number of nucleotides detected as TEs by software analyzed. Numbers in parentheses represent fraction of the sequence 
covered by those TEs

Reference library Zebrafish chromosome 1 Fruit fly genome Human chromosome 21

RepeatScout 26,447,536 (44.39%) 23,540,405 (17.11%) 12,266,284 (26.26%)

RepeatModeler 16,561,994 (27.80%) 15,919,335 (11.57%) 13,551,826 (29.01%)

REPET 18,712,280 (31.41%) 22,412,191 (16.29%) 8,560,157 (18.33%)

Original annotation 26,465,290 (44.42%) 23,990,534 (17.44%) 17,188,977 (36.80%)

Size of analyzed sequence 59,578,282 137,547,960 46,709,983

Table 6 Number of individual TEs annotated by RepeatMasker 
using different reference libraries

Reference library Zebrafish 
chromosome 
1

Fruit fly genome Human 
chromosome 
21

RepeatScout 143,463 55,799 46,628

RepeatModeler 86,813 30,754 49,621

REPET 71,891 38,154 30,838

Original annota-
tion

107,997 38,282 53,540

Fig. 9 Matthews Correlation Coefficient values showing the performance of each tool tested with the datasets tested
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below we try to compare our findings with those previ-
ously published.

First of all, it is clear that in most studies RepeatMod-
eler gives the best results. In the original paper Flynn 
et  al. divided computed models into perfect, good, pre-
sent, and not found [7]. Although this classification might 
be a bit misleading, e.g. “perfect” models might only 95% 
identical with the reference consensus, we looked at our 
results the same way (see Fig. 10). Interestingly, although 
in both studies D. melanogaster genome was subjected to 
the analysis, the results were not the same. Most likely, 
it is due to the fact that we used default parameters of 
RepeatModeler.

As mentioned above Saha et  al. benchmarked six 
programs but only RepeatScout was mutual software 
between their and our study [26]. Moreover, they run 
tests solely on different rice genome data varying from 
3 to 27 Mb with published annotation assumed as a base 
line (golden standard) and only sensitivity was reported. 
For unknown reason, different programs were run on 
different datasets. Nevertheless, RepeatScout performed 
the worst with 3 Mb sequence data with only 26.2% sen-
sitivity but performed much better when run on a larger 
27.8 Mb dataset with sensitivity increased to 84.3%. The 
other software used on both datasets (RepeatFinder) 
behaved similarly, 32.7 and 85.3% sensitivity, respectively. 
These results are similar to our observations that de novo 
repeat finding programs perform better when a larger 
dataset is used to build a TE library (see Table 5).

To evaluate the results it is important to consider not 
only the raw performance of each tool but also the dif-
ficulty to run, configurability, and speed. K-mer counting 

software usually only accept a few parameters such as 
k-mer length, minimum frequency, and length; but these 
tools normally are very easy to run and require little com-
puting power while being incredibly fast. However, one 
of the performance downsides can be the requirement 
to store large data structures in memory. In comparison, 
model-building software employ a strategy that requires 
much more computational resources. They are also more 
time consuming and can be more complex to install, con-
figure, and run.

Based on our simulated data analysis it is clear that 
none of the analyzed software is able to compute a repeat 
consensus sequence perfectly. While the sequence of a 
repeat can be recovered with confidence, the structure 
of the repeat should be inspected manually and edited 
accordingly. This is especially important for longer trans-
posons. In general, for a fast assessment of interspersed 
repeats, Red can be useful, acknowledging of course its 
limitations when it comes to low complexity sequences. 
For more in depth studies with small genomes, Repeat-
Modeler seems to be the best option. It is also interesting 
to note that RepeatScout has a really good performance 
if we take into consideration speed and computational 
requirements. However, the situation may not be as bad 
as it sounds. For some tasks such as repeat masking this 
might be satisfactory. Nevertheless, to fully understand 
biology and evolution of transposable elements in a given 
genome automatic approach is not sufficient but it should 
be a good starting point.

The question appears if our simulated data are close 
enough to reality and if our results are comparable with 
other studies that used simulated sequences. It is very 

Fig. 10 Summary of models’ accuracy obtained by different software and data sets. RepeatModeler* data taken from [7]. Accuracy categories as 
defined in Fig. 3
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difficult to make such a comparison because not many 
studies were performed with simulated data. Flynn et al. 
[7], for instance, used simulated genome depleted of TEs 
to evaluate false positive discovery rate. In other stud-
ies, simulated sequencing reads were used to evaluate 
software for either polymorphic TE insertions [32] or 
TE-expression analyses [30]. Our simulations was differ-
ent as we tried to evaluate software ability to detect TE 
families and their classification. The closest approach to 
our data simulation was attempted by Saha et al. [26] and 
Schaeffer et  al. [27]. In both studies genomic sequences 
are semi-simulated in a way that TEs are left intact 
but sequences between the elements are replaced by a 
sequence generated by fifth-order Markov chain. Unfor-
tunately, Schaeffer et al. provide statistics only in a rela-
tive way, i.e. phRAIDER vs. RepeatScout but we were able 
to compare our results with the findings of Saha et  al. 
They simulated rice genome of two sizes: 3 Mb sequence 
fragment based on Chromosome 12 and full size simu-
lated Chromosome 12. They reported only sensitivity of 
software tested, which was 26.2% in the case of a shorter 
sequence and 85.3% in the case of the whole Chromo-
some 12. In our study, RepeatScout sensitivity was 98.7%, 
a bit higher than reported by Saha et  al., however we 
should note that our simulated data was larger (100 Mb) 
and apparently larger initial dataset guarantees better 
software performance.

Conclusions
We tested a number of tools for de novo detection of 
TEs. The results were compared using the MCC against 
a reference of annotated TEs. As expected, model-build-
ers performed better than k-mer counting software, 
with RepeatModeler beating competitors in most data-
sets. However, even for RepeatModeler, the results are 
far from satisfactory based on the reference annotation. 
There is a tendency for most tools to identify TE-regions 
in a fragmented manner and it is also frequent that small 
TEs or fragmented TEs are not detected. We recognize 
that some of the results obtained may be improved by 
fine tuning of parameters; some tools like REPET are fully 
customizable and more tools can be added to the pipe-
line, although this can be challenging for most users. In 
conclusion, the contemporary tools for de novo detection 
of TEs benchmarked here are far from being perfect and 
the identification of TEs is still a challenging endeavor 
as it requires a significant manual curation by an experi-
enced expert. It seems that for de novo detection of TEs 
extensive manual curation and using multiple tools for 
confirmation of the results obtained is necessary. We also 
found that MCC can be used as a fast and reliable test to 
compare the performance of these software and can give 
a general idea of which tool is best suited for each task.
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