

Evolutionary Functional Genomics

Bioinformatics 1

Population variation

Claudia Acquisti

Evolutionary Functional Genomics Institute for Evolution and Biodiversity, WWU Münster claudia.acquisti@uni-muenster.de

DNA damage

EVOLUTIONARY FUNCTIONAL GENOMICS

MUTATIONS: heritable changes to the genome, essential for evolution.

Copying errors

POLYMORPHISMS

EVOLUTIONARY FUNCTIONAL GENOMICS

How much variation is out there, and how does it evolve over time?

A useful way of looking at it: ALLELE FREQUENCIES

Do allele frequencies change over time? If so, how and why?

Ideal baseline: HARDY-WEINBERG EQUILIBRIUM MODEL

- Hp) Infinite population Random mating No selection No migration
- Ts) Allele frequencies are constant

Nucleotide diversity: a measure of the degree of polymorphism within a population

subj0	ΑΤΑΑΤΑΑΑΑ	ААТААТАААА	АААТААААА	ААТААААААА	А
subj1	АААААААТА	ААТААТААА	АААТААААА	ААААААААА	Α
subj2	ААААТАААА	ТАТААТАААА	АААТАТАААА	ААААААААА	Α
subj3	ААААААААА	ΑΑΤΑΑΤΑΑΑ	АААТАААТАА	АТААААААА	Α
subj4	ААААТАААА	AAATATAAAA	АААТААААА	ААААААААА	Α
subj5	ААААТАААА	АААААТАААА	ААААААААА	АААААТАААА	Α
subj6	ААААААТААА	ААТААТААА	АААТААААА	АААААААААА	Α
subj7	ААААААААА	ААААТАААА	АААТААААА	ААААААААТ	Α
subj8	ААААААААА	ААААААААА	АААТААААА	АААААААААА	Α
subj9	ААААААААА	ААААТАААА	АААТААТААА	ААААААААА	Α

Average number of nucleotide differences per site between any two DNA sequences chosen randomly from the sample population, and is denoted by π .

Tajima's D

 $E[\pi] = \theta$ $E[S] = a1 \theta$

 θ = 4N u (2N= haploid population size, u= mutation rate/generation), and a1 is defined below.

$$D = \frac{\pi - S/a_1}{\sqrt{e_1 S + e_2 S(S - 1)}}$$

A negative Tajima's D signifies an excess of low frequency polymorphisms relative to expectation, indicating population size expansion (e.g., after a bottleneck or a selective sweep) and/or purifying selection.

A positive Tajima's D signifies low levels of both low and high frequency polymorphisms, indicating a decrease in population size and/or balancing selection.

EVOLUTIONARY FUNCTIONAL GENOMICS

Pop size matters

Neutral mutations

At selectively neutral sites, the rate of substitution is equal to the rate of mutation

$$K = Nu \times 1/N = u$$

u = rate of mutation per generationN = Pop sizeK = rate of substitution per generation

Statistical measures of rate of Syn NonSyn substitutions

Approximation:

1st + 2nd vs. 3rd codon positions

Count number of Syn and NonSyn sites!

Exact calculation based on the genetic code D_s = # Syn Subst / # Syn sites D_n = # NonSyn Subst / # NonSyn sites

EVOLUTIONARY FUNCTIONAL GENOMICS

What do we expect?

Synonymous substitution to be more frequent than Nonsynonymous substitutions

Rate of Synonymous substitutions to be more similar between genes than the rate of Nonsynonymous substitutions

EVOLUTIONARYFUNCTIONALGENOMICS

Dn/Ds measure of positive selection

Sliding window approach to detect local signal of positive selection

Neutral Evolution D_N / D_s = 1

Positive Darwinian selection $D_N / D_s > 1$ Negative purifying selection $D_N / D_s < 1$

Mc Donald Kreitmann test

Main idea: genetic variability between populations should be correlated with that within populations

	Fixed	Polymorphic
Synonymous	Ds	Ps
Nonsynonymous	Dn	Pn

Further levels....

Expression: allele specificity, tissue specificity

Epigenomics new kinds of data: discrete (methylation states) and continuous (chromatin structure)

different relevant time scales

intra(!)-individual variability

modes of heritability

imprinting

non-Mendelian inheritance - meiotic drive

The Hardy-Weinberg theorem characterizes the distributions of genotype frequencies in populations that are not evolving, and is thus the fundamental null model for population genetics.

Evolution can be defined as the change in allele frequencies (i.e., genotypes) over time. In the early 1900s, G. Hardy and W. Weinberg developed a mathematical model that predicts genotype frequencies when a population is not being affected by evolutionary forces. The model is known as the Hardy Weinberg Equilibrium Model. The Hardy-Weinberg equilibrium is a baseline against which the evolution of populations can be measured and is the foundation for the genetic theory of evolution. When a population is in Hardy-Weinberg equilibrium, there is no change in gene frequencies and, therefor, no evolution of the population. The conditions required for Hardy-Weinberg equilibrium are almost never met in nature, however. As a result, gene frequencies change and evolution occurs. If a population is not at Hardy-Weinberg equilibrium, then we know that one or more of the conditions required for the equilibrium are not being met.

The Hardy-Weinberg theorem characterizes the distributions of genotype frequencies in populations that are not evolving, and is thus the fundamental null model for population genetics.

Evolution can be defined as the change in allele frequencies (i.e., genotypes) over time. In the early 1900s, G. Hardy and W. Weinberg developed a mathematical model that predicts genotype frequencies when a population is not being affected by evolutionary forces. The model is known as the Hardy Weinberg Equilibrium Model. The Hardy-Weinberg equilibrium is a baseline against which the evolution of populations can be measured and is the foundation for the genetic theory of evolution. When a population is in Hardy-Weinberg equilibrium, there is no change in gene frequencies and, therefor, no evolution of the population. The conditions required for Hardy-Weinberg equilibrium are almost never met in nature, however. As a result, gene frequencies change and evolution occurs. If a population is not at Hardy-Weinberg equilibrium, then we know that one or more of the conditions required for the equilibrium are not being met.

The Hardy-Weinberg theorem characterizes the distributions of genotype frequencies in populations that are not evolving, and is thus the fundamental null model for population genetics.

Evolution can be defined as the change in allele frequencies (i.e., genotypes) over time. In the early 1900s, G. Hardy and W. Weinberg developed a mathematical model that predicts genotype frequencies when a population is not being affected by evolutionary forces. The model is known as the Hardy Weinberg Equilibrium Model. The Hardy-Weinberg equilibrium is a baseline against which the evolution of populations can be measured and is the foundation for the genetic theory of evolution. When a population is in Hardy-Weinberg equilibrium, there is no change in gene frequencies and, therefor, no evolution of the population. The conditions required for Hardy-Weinberg equilibrium are almost never met in nature, however. As a result, gene frequencies change and evolution occurs. If a population is not at Hardy-Weinberg equilibrium, then we know that one or more of the conditions required for the equilibrium are not being met.

Westfälische Wilhelms-Universität Münster		E	Evolutionary Functional Genomics		
Mc Donald Kreitmann test					
Ma	in idea: genetic var should be c	iability be correlated	etween populations with that within po	s opulations	
	Synonymous Nonsynonymous	Fixed Ds Dn	Polymorphic Ps Pn		

Land Westfälische Wilhelms-Universität Münster	
	Further levels
Expression: allele specifie	city, tissue specificity
Epigenomics	
new kinds of data: discret continuous (chromatin st	te (methylation states) and ructure)
different relevant time sca	ales
intra(!)-individual variabili	ity
modes of heritability	
imprinting	
non-Mendelian inheritanc	e - meiotic drive