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AI: "The art of creating machines that perform functions that require
intelligence when performed by people”. [Kurzweil, 1990]
- “automation of intelligent behavior” [Luger and Stubblefield, 1993]

1956: John McCarthy organized a
conference and "The Dartmouth summer
research project on artificial intelligence.”
The Dartmouth conference did bring
together the founders in AI, and served to
lay the groundwork for the future of Al
research.
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John McCarthy regarded as father of Al
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IJCAI-19
August 10-16 2019, Macao, China

Topics

IJCAI-19 welcomes submissions across all areas of Al. The conference scope includes all subareas of Al,
including (but not limited to) traditional topics such as machine Iearning, search, pIanning, knowledge
representation, reasoning, constraint satisfaction, natural Ianwe processing, robotics and
perception, and multiagent systems. We expressly encourage work that cuts across technical areas
and/or integrated capabilities. We encourage all types of contributions including theoretical,
engineering and applied. We also encourage papers on Al techniques in the context of novel
application domains, such as security, sustainability, health care, transportation, and commerce.

In addition there are two special tracks with a specific call for papers:

e Understanding Intelligence and Human-level Al in the New Machine Learning era
e Al for Improving Human-Well Being
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Al >> Machine Learning (Deep Learning)

Media: Al = Machine Learning (Deep Learning)

Artificial Intelligence

Logical Systems
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Imaging:
Making the invisible visible

Wilhelm Conrad Rontgen (1845 - 1923)

. . . . First medical X-ray (hand of
First Nobel Prize in Physics RGNtgen’s wife Anna Bertha

Ludwig), 1895
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> 100 years

MRI

Radiograph PET
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Optical Imaging Intravital Imaging Whole-Body Imaging
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" Cell i Tissue mm Organ ©"




—— Minster Biomedical Image Analysis

Tasks: Knowledge extraction from image data

Image enhancement

Registration

Motion analysis

Segmentation (detection of anatomical structures)
Quantification

Decision-making (diagnosis)

Therapy planning

Computer-assisted surgery

10
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—> Disease X/Y/Z

« Classification: Globally classify the whole image (e.g. diagnosis)
« Segmentation: Locally classify each pixel into vessel yes/no

- Quantification: e.qg. ratio artery / vein (after classification artery vs. vein)

11
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Machine Learning

Machine Learning is about prediction

data ——

model
|
Cm
I

training data

ﬁ

output
- number (classification,
regression)
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Learn a function: probability of classi = F(x),i=1, 2, ..., C
. -
Regression .
— Zc _
X@1)
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—x =—p P(cat)=0.9

\ P(dog) = 0.1

—x =—p P(cat)=0.2

\ P(dog) = 0.8

Classification is done by regression (computation of probabilities)!

14
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Machine Learning: Linear Function

Input: N function values (ty, t,, ..., ty) at positions (xy, X5, ..., Xy)

Output: determine (wy, w;) fort = wy + w;X

Linear dependence of sales on advertising budget:

sales a-TV+b =|F(TV)

We need more complex function models!

15
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Neural network as function approximator:

d
net = E W; T4
i=0

y = W0 T W1T1 + Wk + *** + WLy

v

Activation function:

1, ifnet >0
fnet) = { 0, otherwise

simple model of neuron

16
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Multilayer feedforward neural network:

d input

nodes H d
H hidden B
%1 layer nodes k. = f Wiy - f Wig * Ty
\‘ ‘ s 2 J:1 i=1 A

Zc
o0 parameters

k=1,2,...c output Input

Theorem (multilayer networks are universal approximators): Multilayer networks with
one hidden layer can approximate any function to any desired degree of accuracy.

17
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Learn a function: probability of classi = F(x),i=1, 2, ..., C

Regression

H hidden
layer nodes

¢ output

ot s

max.
Zk probability
oy ordasse
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Learning models from data for prediction

data — model —— result

Input Hidden Output
layer layer layer

Input #1 — /// M
Input #2 —
Input #3 —

Y
Input #4 —
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Learning from tabular data towards decision trees

Patrons?
Attributes Goal None Some Full
Example - - - .
Alt Bar Fri Hun Pat Price | Rain Res Type Est Wait
X, Yes No No Yes Some $5% No Yes French 0-10 Yes
X5 Yes | No | No | Yes | Full | § | No | No | Thai | 3060 || No No Yes Hungry?
X3 No Yes No No Some $ No No Burger 0-10 Yes
Xy Yes No Yes Yes Full $ No No Thai 10-30 Yes —
X5 Yes No Yes No Full $5% No Yes French =60 No Yes No
X No Yes No Yes Some $% Yes Yes Italian 0-10 Yes
X5 No Yes No No None $ Yes No Burger 0-10 No
Xs No No No Yes Some $% Yes Yes Thai 0-10 Yes
Xo No | Yes | Yes | No | Full $ Yes | No | Burger | >60 No Type? No
Xio Yes | Yes | Yes Yes Full $5% No Yes Italian 10-30 No
X1 No No No No None $ No No Thai 0-10 No
Xio Yes | Yes | Yes Yes Full $ No No Burger | 30-60 Yes

Italian Thai

/N

Yes No Fri/Sat? Yes

French

Yes No

Yes No
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Powerful ensemble tree models

(bagging, random forest, gradient boosted trees)

X

treeq

tree,

voting

}

k

Machine Learning: Tree-based Decision Models
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Diatom classification: Application in biology, climate research, forensic medicine

Group Feature
Symmetry class of symmetry (1)
O\ 1 \ Shape descriptors rectangularity, circularity, ellipticity, triangularity
‘,;_.‘.‘o(‘\'\ res A% compactness (5)
".:"""1’;{.{! ",\'\\»"} v/ Shape properties global shape properties (1)
\*/ el shape of the end points (10)
Geometric properties length, width, length /width-ratio, size (4)

Diatom specific features | striae density, direction, changeover point (3)
axial area width (1)
costae density (1)

horizontal frequency (1)

Other features moment invariants (7)
Fourier descriptors (126)

23
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Width
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=X =—)p Cat

Features are more important than classifiers!
* Manual design by engineers

 Automatic feature learning from data (Deep Learning)

25
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Deep Learning
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INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN o::grm SOFTMAX

FEATURE LEARNING

CLASSIFICATION

Classification: The second part of this architecture is often fully-connected neural network.
After CNN training this classification part could be replaced by any classifier; such a replacement

may even result in improved classification performance.
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PERFORMANCE OF MODELS (POINT ESTIMATES FOR DRIVE, AVERAGES WITH .95 CONFIDENCE INTERVALS FOR STARE)

Deep Learning: Vessel Segmentation

feature maps

1
-

SEm

s ¥

=
1]

input layer

convolution
layer

pooling

layer layers

TABLE III

convolution  fully-connected

layers

DRIVE STARE
AUC Acc Acc* Kappa Sens Spec AUC Acc Acc* Kappa Sens Spec
PLAIN 9683 .9479 .9473 .7653 .7417 .9804  .9767+.0053 .9559+.0071 .9551+.0072 .7477+.0451 .7495+.0721 .9788+.0081
GCN .9708 .9487 .9475 .7708 .7550 .9792  .9787+.0049 .9571+.0064 .9572+.0064 .7573+.0394 .7620+.0656 .9789+.0072
ZCA 9719 .9485 .9472 .7756 .7819 .9748  .9783+.0062 .9563+.0064 .9562+.0066 .7598+.0317 .7718+.0490 .9783+.0055
AUGMENT .9663 .9466 .9453 .7610 .7447 9784  .9744+.0048 .9527+.0068 .9512+.0069 .7306+.0431 .7376+.0720 .9769+.0086
BALANCED .9738 .9230 .9251 .7193 .9160 .9241  .9820+.0045 .9309+.0107 .9620+.0051 .7021+.0305 .9307+.0274 .9304+.0133
NO-POOL  .9720 .9495 .9486 .7781 .7763 .9768  .9785+.0066 .9566+.0082 .9568+.0081 .7622+.0415 .7867+.0698 .9754+.0099

Liskowski, 2016

28
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3D OCT angiography

2D retinal image + ground
truth (STARE, DRIVE, etc.)

Kuhlmann, 2021 29
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Nuclei detection in breast cancer histopathology:

R I l él Wik 1\-%\'%!é 2" hidden layeré Output layer: Softmax classifier detect
W r;)ut ayer TEPa— i(s units) i input patches as nuclei or non-nuclei
' i A ailioc 1 \92 1
_ PR N \ (d . X Tunits) v : ! patches
_____________ T L e I R T e R e ise ias b am _,_._._4_._?_._4_‘_‘_._,_,_,_,_,_,_._._A-._‘_._i_,_._A_._._,_ A S s b A S
Input raw pixels of selected : Feature representation ' Softmax classifier for nuclei detection

patch with sliding windows |

Xu, 2016 30
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Segmentation of Drosophila macrophages in in-vivo fluorescence microscopy images:

(b)

Fig. 1: Examples of the input images. (a) SDCM image of in-vivo wildtype
Drosophila macrophages which have been marked using GFP. (b) Magnified
illustration of a single cell. Brightness and contrast have been enhanced for bet-
ter clarity. Arrows exemplarily mark the three foreground classes relevant for
the segmentation: (A) cell body, (B) lamellipodium, and (C) filopodia.

Scherzinger, 2018 31
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Fig.4: Exemplary results for a single image tile from the validation set.
(a) Ground truth labeling. (b) U-net with Fi-measure loss function. (¢) U-net
with weighted cross entropy. (d) GMM. (e) K-means. (f) Otsu.

Scherzinger, 2018 32
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How can we describe
the motion between
the two frames?

Deep Learning: Optical Flow Computation

33
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FlowNet: Learning Optical Flow with Convolutional Networks

5/ y SN "ﬁa

FlowNet

P. Fischer
AADUSDVMSHy,.
E. llg,

P. Hausser.

C. Hazirbas,

V. Golkov

P.v.d. Smagt,

0. Cremers.

[. Brox

FlowNetS FlowNetC

We train convolutional networks to estimate optical flow.

Dosovitskiy, 2015 34
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Ultrasound: Heart movement, 2D optical flow vectors

9

PET: Heart movement, 3D optical flow vectors

35
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Geoffrey Hinton

Turing Award
laureate 2018

Deep Learning: Diagnosis

“"We should stop training radiologists right now, in 5
vears deep learning will have better performance” (2016)

Barriers slow AI/DL’s move to
the mainstream in medical imaging

 Many technical challenges
« Integration of AI/DL tools into medical workflows

« Challenging regulatory process and legal issues

36
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nature

Article | Published: 01 January 2020

International evaluation of an Al system
for breast cancer screening

Scott Mayer McKinney &3, Marcin Sieniek, [...] Shravya Shetty

Nature 577, 89-94(2020) ‘ Cite this article

20k Accesses ‘ 1 Citations ‘ 3368 Altmetric ‘ Metrics

Deep Learning: Diagnosis

Screening mammography aims to identify breast cancer at earlier stages of the
disease, when treatment can be more successful’. Despite the existence of screening
programmesworldwide, the interpretation of mammograms is affected by high rates
of false positives and false negatives?. Here we present an artificial intelligence (Al)
system that is capable ofsurpassing human expertsin breast cancer prediction. To

assessits performancein the clinical setting, we curated a large representative dataset
fromthe UK and alarge enriched dataset from the USA. We show an absolute
reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false
negatives. We provide evidence of the ability of the system to generalize from the UK
tothe USA.Inanindependentstudy of six radiologists, the Al system outperformed
all of the humanreaders: the area under the receiver operating characteristic curve
(AUC-ROC) for the Al system was greater than the AUC-ROC for the average
radiologist by an absolute margin of 11.5%. We ran a simulation in which the Al system
participated in the double-reading process thatis used in the UK, and found that the
Al system maintained non-inferior performance and reduced the workload of the
second reader by 88%. This robust assessment of the Al system paves the way for
clinical trials to improve the accuracy and efficiency of breast cancer screening.

37
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'm Input Data , Data Preprocessing
fankuter - % E
Lars Kotthoff 4 = §
S1EIc|2l8 o] = g
Automated 2l S EI 818 £ |24,
Machine
Learmng AutoGhuon oo o]0 o 0] o |o
: Ludwig o o o oo [ e o o
TransmogrifAl (] [ B ) [ ) ® o o
— .. H20-AutoML o [ B ] ® o o
&) Spring Auto-Keras [ N ] ? e o3
Auto_ ML [ ? o ®
. . Auto-Weka o ] [ o
Automated machine learning Autosklearn | @ o o
. . TPOT 3*
(AutoML): make the numerous decisions Google AuioMIT] [e (@[ @ [e o] ® e e
of system design in an objective and v
automated way — democratization of H20-Driverless AT(") [@ [0 [@ [0 [0 [0 © [0[0]6@

maCh | ne Iea rn | ng . W|th AutOM L, Table 2: Comparison of AutoML frameworks accepted data and data preprocessing steps. “7”

represents that no indicators were found that the feature is included in that framework. An empty

Cu Sto m |Zed Sta te 'Of'th e-a rt Ma Ch | ne field indicates that the feature is not present in the selected framework and a @ represents that it
is included. (*): commercial frameworks; (2*): including object tracking in videos, and video and

Iea n | N g |S at eve ryo n e,S fl n g e rtl ps audio classification; (3*): must be already converted into numeric values
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(a) Original OCTA image (b) Zana Vesselness (¢c) nnUnet

Figure 16: Exemplary results of the application of nnUnet [19] and a Zana vesselness measure-
based [42] for retinal vessel segmentation. The left figure (a) shows a slice from the original OCTA
volume. The results for the same slice for Zana (b) and nnUnet (c¢) encode true background and
foreground detections as black and white, respectively. False background detections are colored
green. False foreground detections are highlighted in in red.

39
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Explainable Al

“mndo"
57.7% contfidence

“gibbon"
09.3% confidence

@ P(Ice-bear) = 0.08 ® P(Ice-bear) = 0.63

@ P(Ice-bear) = 0.64

1.0

S }4
o ®

P(Ice-bear)

4 Natural

0.2

N

20 40 60 80 100

Frame

Azulay, 2019 40
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Model Physical Dynamics by Sampling
from Distribution

ke
.

input

Explainable Al

O N O ’v
8 8 8 i LINIT
f"[.‘.) 45
«' Target

Perturbed Stop Sign Under
Varying Distances/Angles

Eykholt, 2018

41



—— " = Universitit
Miinster

Explainable Al:
Interpreting, Explaining and
&1 Visualizing Deep Learning

g \'o';
2
ir
a3
g
=

Explainable Al

classify image

Black Box

——» | Rooster

Al System

prediction f(x)

Explanation methods

' LRP: Decomposition

SRS |

' (how much does each pixel
' contribute to prediction)

SA: Partial derivatives

Ri = || s@)|

heatmap explain prediction
Al system's decision is -
based on these pixels

(how much do changes in each
pixel affect the prediction)

Why explainability ?

Verify predictions
' Identify flaws and biases

| Learn about the problem
+ Ensure compliance to legislation

r
]
]
]

Fig. 1. Explaining predictions of an Al system. The input image is correctly classified as “rooster”. In order to understand
why the system has arrived at this decision, explanation methods such as SA or LRP are applied. The result of this explanation
is an image, the heatmap, which visualizes the importance of each pixel for the prediction. In this example the rooster’s red
comb and wattle are the basis for the Al system’s decision. With the heatmap one can verify that the Al system works as
intended.

42
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(A) Image classification
Explaining predictions: "Volcano", "Coffe Cup"

SA LRP

- ~

R

Quantitave comparison of SA and LRP

SA

LRP

Explainable Al

(B) Text document classification
Explaining prediction: "sci.med"

It is the body's reaction to a strange environment, It appears to be induced
partly to physical [N o9 part to sental distress. Some people are
sore prone to it than others, like some people are more prone to get sick

on a roller coaster ride than others. The mental part is usuvally induced by

a lack of clear indication of which way is up or down, ie: the Shuttle is
normally oriented with its cargo bay pointed towards Earth, so the Earth

(or ground) is “above" the head of the astronauts. About 58X of the astromauts
experience sove form of motion SICKRESS, and NASA has done numercus tests in
space to try to see how to keep the nusber of occurances down.

It is the BOGY's reaction to a strange environsent. It appears to be induced
partly to physical * and part to mental distress. Some people are
mOre prond to it than others, like some people are more prone to get sick

on a roller coaster QR than others. The mental part is uswally induced by

8 lack of clear indication of which way 15 up or down, 1e: the Shuttle is
norsally oriented with its CArgo bay pointed towards Earth, so the Earth

(or ground) is “above® the head of the ASLronauts. About 50% of the astronauts
experience some form of motion SICKNESS, and NASA has done numerous Lests in

SPBER to try to see how to keep the number of occurances down.

Quantitave comparison of SA and LRP

(C) Human action recognition in videos
Explaining prediction: "sit-up"

~ U
LRP relevances \
per frame

0 20 40 60

Video frame

43
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> 100 years

Optical Imaging Intravital Imaging Whole-Body Imaging

Cell um Tissue i Organ «m

+ Powerful (ML-based) image analysis algorithms & tools

Thereis no modern biology and medicine without imaging

44
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Briefings in Bioinformatics, 18(5), 2017, 851-869

doi: 10.1093/bib/bbw068
Advance Access Publication Date: 25 July 2016
Paper

Deep learning in bioinformatics: introduction,

Deep learning in bioinformatics application, and perspective in big data era

Seonwoo Min, Byunghan Lee and Sungroh Yoon

Corresponding author: Sungroh Yoon, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
Tel.: +82-2-880-1401,; Fax: +82-2-871-5974; E-mail: sryoon@snu.ac.kr

Yu Li Chao Huang Lizhong Ding Zhongxiao Li
KAUST NICT ITAI KAUST
CBRC CAS CBRC
CEMSE CEMSE

Recent Advances of Deep Learning
in Bioinformatics and Computational
Biology

Binhua Tang **, Zixiang Pan ', Kang Yin' and Asif Khateeb'
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Omics Deep learning Research avenues

[- ++ ACGTCACGTACTAG -- J

Biomedical imaging

=

Biomedical signal processing

A |

Min, 2017 47
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B C D

ch Splice junction # Finger joint M Lapse
XEE R @

I Pooling

Deep . . . . Convolutional C C. C Recurrent
neural network neural network

neural network

I Convolution

Time = t-1 Time=t Time=1t}l

. ; 3 - Spatial S ial
N e 1 s PHEM ossng () [ (]
Shding window
Sliding window ——

-+ AGAGACGTCGGC --- DNA sequence I_ X-ray image @4 EEG signal

Figure 2. Application of deep learning in bioinformatics research. (A) Overview diagram with input data and research objectives. (B) A research example in the omics
domain. Prediction of splice junctions in DNA sequence data with a deep neural network [94]. (C) A research example in biomedical imaging. Finger joint detection

from X-ray images with a convolutional neural network [145]. (D) A research example in biomedical signal processing. Lapse detection from EEG signal with a recurrent
neural network [178].

Min, 2017
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Afeal\ S Alpha i)
al Lol - ([ MK-MMD | Subject Spatial
AP\ DA . P Attention
A\ e\ N\
Q )
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W\ A\ A = = S 3
Bet 73] 72} o o
Ve \ e\ - = a %
= =
_/
BCI System EEG Time Series Multi-Frame EEG Images Subject-Shared  Subject-Specific Class Prediction
Module Module Module

Fig. 2. Pipeline overview of the proposed cross-subject transfer model: (1) EEG time series are divided into 7 slices of 0.5-second windows and spectral
power within the three frequency bands (theta (4-7Hz), alpha (8-13Hz), and beta (13-30 Hz)) are extracted by Fast Fourier Transform (FFT); (2) A 2-D space
position map of EEG electrodes formed by the azimuthal equidistant projection is then utilized to make 7-frame EEG images with three spectral channels; (3)
Then, a pair of source and target EEG images are fed into the Subject-Shared module. This Subject-Shared module has been pretrained only by the source
data and is frozen in the training phase; (4) Subsequently, the output feature pair is input in the Subject-Specific module. In this module, the features from
different domains are further fed into the same layer architecture but with different network parameters; (5) Finally, the Class-Prediction module processes
the output features by the last module and makes a decision for the level of WM load.

Chen, 2022 49
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CLASSIFICATION
SUPERVISED

LEARNING
Develop predictive

model based on both s

input and output data

- REGRESSION J

{ MACHINE LEARNING

o 3
UNSUPERVISED -
LEARNING

Group and interpret '
J

CLUSTERING ]

data based only
on input data
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Estimated number of clusters: 3

R .. { Group data into clusters such that there is
PR S - high intra-class similarity (— compact clusters)

X , - .‘f ) . . . . . . ags
0 Teeen ., LI e : « low inter-class similarity (— good separability)
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Example:

Kk

2

Clustering: K-Means
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A main limitation of one-way clustering algorithms when applied to
high-dimensional molecular data for disease subtyping is that cluster
assignment of samples is based on the assumption that all molecular
features are relevant to the sample groups or disease subtypes.

Biclustering (or two-way clustering, co-clustering, two-mode clustering)
is a popular statistical method for simultaneously identifying groups of
samples (rows) and groups of variables (columns) characterizing different
sample groups.
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View 1 View 2
Bicluster 1

Bicluster 2

Bicluster 3

Figure 1: Pictorial illustration of integrative biclustering with two views. A bicluster is
comprised of rows (or samples) and columns (or variables) from each view, with the samples
in view 1 being the same as the samples in view 2. The samples in each bicluster can overlap
or not. Similarly, the variables in each bicluster within a view can overlap or not. In this
figure, the samples and variables in each bicluster do not overlap.
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Machine Learning provides powerful tools for bioinformatics
 omics data analysis
- biomedical imaging

« biomedical signal processing
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