

BIOLOGY Bioinformatics 1

Systems Biology

an Introduction

16.11.2023 - 10:15 to 11:45

Eberhard Korsching

complex-systems.uni-muenster.de

How to become a theoretical biologist ?

Resources

Internet resources : no science area is better represented on the web than the theoretical sciences

get inspired

Brian Munsky, William S. Hlavacek, and

Modeling in Systems Biology The Petri Net Approach Ina Koch Wolfgang Reisig Falk Schreiber Editors

QUANTITATIVE BIOLOGY

discover topics

even more ...

What are we going to talk about?

- Term definitions & some first orientation
- What is a biological network? and how we might use it...
- Application example from experimental data to results...
- Important technologies and spotlights on how systems biology is applied...

Definitions

&

Overview

What is systems biology?

Mainly focusing on one cell and their cellular states, sometimes on parts of a cell, and sometimes on all the cells forming tissues/organs ...

https://doi.org/10.1371/journal.pone.0007739.g004

Neonatal pancreas, mice: Endocrine-cells coated with a layer of extracellular matrix. Immunohistochemical staining for Insulin (green), glucagon (red) and collagen IV (yellow) - 50 μm scale bar.

... tries to explain the interaction (mechanisms) of all molecules forming and maintaining a cell and their self developed micro environment ...

Human cell nuclei with fluorescently labeled chromatin (purple) and nuclear envelope (green). Image credit: Fang-Yi Chu & Alexandra Zidovska, N.Y. University.

Our focus : molecule quantities

Even more specific:

gene expression protein expression

no (larger) complexes, no (smaller) fragments, and no atoms

so, many objects are excluded

Systems biology is highly complex

ESTIMATES for the complexity of a human cell

About $25 * 10^9$ human hemoglobin macromolecules (64 kDa or ku) fit in the volume of a human cell

Likely >10⁵ basic types of macromolecules DNA, RNAs, proteins, glycans, fragments, ...

More details on models

Biological objects can be described by a logical notation of properties, rules and states, often in a mathematical way forming a model of observations.

consider additionally

- A biological object can be investigated by means of different experimental methods which might or might not conform with a certain model
- Each biological object/process can be described by various models
- The choice of a model depends on the problem, the purpose, and the intention of the investigator
- The process of modeling has to reflect essential properties of the system

Model development

What is important to consider?

- Review of the existing publications associated with a certain topic
- What types of data are available for this research question?
- What type of confidence is associated with the data :

this means, fetch additional information on the creation and limitations of the experimental data (really important)

Working with models - have a concept

- Identify the specific questions that shall be answered
- Build a stringent hypothesis before you start

Implementation of a model

- Select the level of abstraction (molecular, cellular, physiological, phenotypical, disease related, ...)
- Methodological approaches: e.g. deterministic or stochastic
- Variable types: discrete or continuous

Establish controls for the model, e.g. :

- Robustness / sensitivity analysis
 e.g. test the probability to be able to distinguish two different model groups
- Data randomization should show different results

Section summary

You got some insight on

- what kind of idea is behind systems biology
- what might be meant by using the term model

Have in mind

--> A model is the basis of every research question and indispensable for doing systems biology

some more notes on

systems biology

The evolution of systems biology

Systems biology - scientific fields

a schematic view

A microscopic view

Normal Breast - glands & stroma

A --> B : systemic change

A – Normal

A normal duct has a myoepithelial cell layer and a single luminal cell layer

B - Epithelial hyperplasia

The lumen is filled with a heterogeneous population of cells of slightly different morphology

A molecular view

again schematic

19

by a graph (c.f. --> 'graph theory')

composed of nodes / vertices and edges / arcs

which visualize

relations

between parts of the system

This is leads to a different definition

for systems biology

"The whole is more than the sum of the parts"

gene expression example:

Section summary

Systems biology tries primarily to model the dynamic parts of a cell : the cellular mechanisms

further methods useful

in systems biology

Lingua franca

an elaborated handling of complex systems needs

modeling/ computing platforms

the **language** of the life science community is often **R**

scientists who come from engineering disciplines tend to use e.g. Julia

and those in the physics community may be more familiar with e.g. **SAGE**

from the perspective of biology

Systems biology

- ... deals with the analysis of all (known/relevant) interactions between the components of a cellular system
- ... tries to explain and to predict cellular behavior
- ... emerged with the appearance of the high-throughput technologies

massive parallel measurements of molecular observables

High-throughput technologies

 Genome-, transcriptome-, sequencing, ... you already heard about that in the last lessons ...

• Tissue-, peptide-, protein microarrays ...

Characterized by a highly parallel measurement of concentrations or numbers of system compounds

appearing or disappearing or changing due to different physiological conditions ...

Section summary

So, high-throughput technologies

are measuring states of the system

and this data will be analyzed

by a computing platform & language

More details on interactions

- Biochemical reactions between molecular factors
- Physical binding (without chemical reactions) to establish a molecular complex, a membrane, etc.

Those interactions are forming a **biological network** which can be analyzed by different **network models**,

e.g. :

reaction networks (Petri nets ...) looking on properties like reaction kinetics, stoichiometry, ...

co-expression networks comparing expression trends over time and between genes

$b_{B} = =$

Mid-term summary

Disassembling a system into components

Components Biology

HT analytical chemistry:

- genomics
- transcriptomics
- proteomics
- etc.

Assembling components to a model system

Systems Biology

Integrative analysis:

- bioinformatics
- computer simulation

- concept from the book B.O. Palsson
- --> both approaches are necessary for a mechanistic understanding

Main section

Introducing some basic graph theoretical ideas discussing measurement options pointing to some limitations showing a real world experiment

Presenting an expression analysis: protein co-expression

More methods

- single cell sequencing
- microRNA mRNA networks
- Petri nets
- gene co-expression networks

Outlook on further topics - systems biology is huge ...

What is a network ?

Abstract definition: interconnected nodes

'interconnect' means : sharing something

e.g. inter-/ or changing information or physical objects

in biology, e.g.

metabolic reactions

to transport energy to build macromolecules to degrade macromolecules to transport information

Different networks - different perspectives

Protein-protein interaction networks (PPI, sometimes also peptide-peptide interaction) primary network - e.g. transcription pre-initiation complex, cell structure forming, signaling

Metabolic networks

primary network - e.g. databases : KEGG (Japan), ExPASy (Swiss) Biochemical Pathways

Genetic interaction networks

meta network - e.g. observe pattern of mutations and associate with disease types

Gene / transcriptional regulatory networks

primary network - cellular control on structure and function, e.g. cellular differentiation, morphogenesis

Cell signaling networks

primary network - cell communication plays a role in e.g. body development, immunity

Gene / protein expression networks

meta network - observe expression pattern and associate e.g. with disease function

Neural networks - a primary network or in the case of AI networks a meta network Ecological networks - meta network - e.g. ecological interactions between species

Some details on networks means some details on graphs

Hubs & Routers

Directed versus undirected graphs

Undirected graph (V ₁ , E ₁)
V ₁ = {1,2,3}
$E_1 = \{\{1,2\},\{2,3\},\{3,1\}\}$

- Directed graph (V₂, E₂) V₂ = {1,2,3} E₂ = {(1,2),(2,3),(3,2),(1,3)}
- Easier way to draw directed graph (V₂,E₂)

V := vertex / pl. vertices (nodes) E := edges

Network properties

Node degree distribution

number of direct neighbors per node

Subgraphs / motifs

Betweenness-Centrality

BC: number of shortest path through a node (bridge function)

Assortativity

high degree nodes directly connected to other high degree nodes

Real world 'node degree' distributions

k := observed node degrees

Shape of the network

biological networks

might be useful sometimes as a control

Network types

Join graph theory with biology (I)

Prokaryotic auto-regulatory feedback loop.

Translation into a graph

Join graph theory with biology (II)

Example of an eukaryotic transcription factor activity.

Translation into a graph

red: high expression blue: low expression

Research example

Research question: Which motif **A** or **B** is more relevant in our situation of interest ?

TF : transcription factor

Target : gene

measured : mRNA + microRNA expression

filtering with database information: TF- + microRNA targets

Section summary

- we have learned some basics on the cellular networks
- we have learned some facts on graphs, motifs and the visualization of models
- we translated biology into graphs and vice versa

Measurements

The basis for calculating networks

is qualitative and/or quantitative information

on systemic properties which are interaction information or could be interpreted as such

so, we need measurements ...

Protein expression measurements

The chosen method:

Immunohistology

means, we creating ultra thin sections of a frozen or paraffin embedded tissue sample

these sections will be stained:

all sections:

with a stain for the tissue structure

each individual section:

with a stain specific only for the selected protein

Immunohistology - create sections

sections - approx. 4 μ m thick and an area between 1 mm² and 1 cm²

Cryotome

How to stain these sections ?

• H&E stain is for showing tissue structure

 Immunostaining is to visualize specific macromolecules by using antibodies directed against these molecules

How to measure protein expression ?

basal breast cancer

K5/p63 positive K14 negative

One way is

to count total cells in a certain sector,

note down positivitity,

note down the strength of the staining per cell,

and calculate the final score value

The result for each sector is a single number ranging e.g.

from 0 (negative) to 3 (strongly positive)

It might look different for other sub-types

3

()

basal breast cancer

K5/K14 positive p63 negative

 which represent almost 9% of invasive ductal breast cancers

mostly aggressive hormone receptor negative grade III tumors

50

Another cancer subtype

Transcription factor p63positive tumors are rare

and

showed in this case no overlap to

K5/K14-positive tumors

Gene expression measurements

Pick a piece of tissue which owns predominantly a certain cell type of interest (cells of interest > 70 %)

Dissolve the tissue and separate the molecule class of interest

Take appropriate technologies (RNAseq, expression microarrays) to generate signals of expression strength

Drawback in this case:

- loss of information (spatial information, morphology)
- cell type mixture of unknown composition ...

Section summary

 we have learned some basics on protein measurements (immunohistology)

• and conventional mRNA measurements

Advanced methods: Single cell omics

Separate cells,

and measure the expressom

and further features by sequencing

Microfluidic Partitioning & Barcoding

0

(Peterson et al., 2017)

Single cell omics

> Single cell multi-omics

ဖ

Protein detection by scRNA-seq

cellular indexing of transcriptomes and epitopes

Flowchart : Single-Cell Data Analysis

Measurement summary

Every method has its limitations be aware of that, be critical on the quality of your lab results

Translating measurements into data is an important step and has again a big impact on the results

NOTE: Like in *laboratory experiments* also *theoretical experiments* usually termed '**analysis**' need controls to verify the stability of the generated results

Drawing good conclusions is bound to careful considerations and high data quality

A co-expression example

One physiological situation

invasive ductal carcinoma HE stained

Objective

analyze molecular **dependencies** based on **one** condition

What to measure in this example ?

16 different proteins and their expression

one patient sample of a tissue with ductal invasive carcinoma

--> we measure a pattern of 16 protein expression values

proteins 1 to 16

How stable is the measurement ?

If we have one measurement, we own some uncertainty that the next measurements is exactly equal

do at least 3-5 replicate measurements more is better

NOTE: there are statistical rules to decide how many replicates are necessary to get a certain precision

How to come to dependencies ?

At this point we only measured one patient sample with 16 protein expressions

this is **not sufficient** to see a **dependency** between our 16 proteins

the term dependency implies a further type of information

In our case this additional information will result from measuring many patients of the same disease situation slightly varying the basic situation

Score data based on raw signals

16 proteins C N O P Q A В D E F G н K M K5 K8-18 EMA ERBB2 VIM p53 BCL2 CyclinD1 RowNames K19 EGFR K14 K1 K10 ER PR KI67 2.5 2.5

patient samples

score sheet

Entering the first analysis step

Applying a proximity measure between each of the protein columns

Purpose: how similar or dissimilar is the protein expression

Result: in this example protein 'red' and 'blue' is more similar and 'green' more dissimilar to 'red/blue'

Section summary

The basic assumption in this approach is that all molecular factors belong to a **cellular system in one physiological condition**

therefore if one factor is tuned, many others are also tuned as a systemic consequence

Every patient owns a slightly different network

The superposition of all network variants is exposing the dependencies

Spotlights

on networks,

databases,

and advanced application scenarios

Petri net

'Petri nets' are used as a formal and graphical language for modeling systems

A Petri net is represented by a directed, finite, bipartite graph, typically without isolated nodes

Scheme for an enzymatic reaction

Membrane transport

Tools to work with

Download & Credits

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Software

The scientific biography behind that: Monika Heiner

WGCNA - R package

Gene co-expression networks

but instead - as before - over proteins (many different patients, but of one condition)

here now over genes

in many different conditions (e.g. a certain cell type treated with different agents)

objective : find gene modules that differentiate these conditions

How does it work ?

sample conditions 1 2 m

Pearson correlation of gene profiles (rows)

The outcome is a number of modules (groups) of genes

each module with a typical expression profile

is assumed to share a specific biological context

The modules might explain the network difference

between the tested biological conditions

WGCNA - example of use

GBM - glioblastoma OV - ovarian adenocarcinoma BRCA - invasive breast carcinoma KIRC - kidney carcinoma

The 47 prognostic modules are plotted in four circles, each representing one cancer type

Grey lines: conservation correspondence between different cancer types

Databases

Some core databases

Chemical reaction constants database http://kinetics.nist.gov/kinetics/welcome.jsp

Biochemical reaction kinetics database http://sabio.villa-bosch.de/ http://www.ebi.ac.uk/biomodels/

microRNA database

http://www.mirbase.org/

Genome database

http://www.internationalgenome.org/

EBI database http://www.ebi.ac.uk/

NCBI database

https://www.ncbi.nlm.nih.gov/

Pathway database http://www.genome.jp/

Pathway database : KEGG

Epigenetics

Methylation targets

Somatic Cell Reprogramming

Transcriptional regulators that account for the activation of a certain cell state are combined into a module.

Four modules:

2 different **differentiation** modules A and B, the **pluripotency** P,

and the exogenous reprogramming genes ${\sf E}.$

Each module is governed by the activity of the other modules as well as its epigenetic states.

Cell-Free Protein Synthesis - https://doi.org/10.1002/cbic.201500340

Synthetic biology

Evolutionary Systems Biology

Hanahan, Cancer Discov 2022, 12(3) Hanahan & Weinberg, Cell, 2011, 144(5),

Cancer stem cells follow their own evolutionary process, which results in an escape from the multi-cellular control mechanisms.

The hallmarks of cancer are indicators on this way.

A teaser for the next lecture

Is artificial intelligence (AI)

the next big thing in systems biology ?

It depends ...

AI is still based on known ideas.

Therefore it might be still **limited** for detecting new concepts in biological systems.

Take home message

• Systems biology

is mapping massive parallel measurementsinto systemic modelsand is trying to explainthe behavior of complex biological systems

 The methodology of systems biology still needs attention and more elaborated concepts