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GETTING SEQUENCES IS EASY

TGCATCGATCGTAGCTAGCTAGCGCATGCTAGCTAGCTAGCTAGCTACGATGCATCG
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG
CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT
AGCTAGTGTAGCTAGCTAGCATGCTGCTAGCATGCAGCATGCATCGGGCGCGATGCT
GCTAGCGCTGCTAGCTAGCTAGCTAGCTAGGCGCTAATTATTTATTTTGGGGGGTTA
AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCACATGATGATCGTTAGTAGCTACT
AGCTCTCATCGCGCGGGEGEEGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT
AAAGACCCCATCTCTCTCTCTTTTCCCTTCTCTCGCTAGCGGGCGGTACGATTTACC
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGLCGCGTAGCTAGTGCTAGCTAGTC
AGCTCTCATCGCGCGGGEGEEGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT



GETTING SEQUENCES IS EASY -
RELATIVELY

The shortest human chromosome
(21) is 45.1 Mb long

The longest single read achieved so
far i1s “only” 4 Mb long. It was
obtained using nanopore technology
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Sequence assembly

A fundamental goal of DNA sequencing is to generate large, continuous regions of
DNA sequence - CONTIGS

e In principle, assembling a sequence is just a matter of finding overlaps and
combining them.

* |n practice:
* most genomes contain multiple copies of many sequences,

 there are random mutations (either naturally occurring cell-to-cell variation
or generated by PCR or cloning),

e there are sequencing errors

Dp,



Genome assembly

* Whole-genome shotgun sequencing starts with copying (NGS) and fragmenting the DNA

* “Shotgun” refers to the random fragmentation of the whole genome; like it was fired from a gun

Source material GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

Copies GGTCTCTAAGCGCTAGACTAGGACTGAAAATC
GGTCTCTAAGCGCTAGACTAGGACTGAAAATC
GGTCTCTAAGCGCTAGACTAGGACTGAAAATC
GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

Fragments GGTCT CTAAGC GCTAGACTAGGACTG AAAATC
GGTCTCTAAGC GCTAGACTAGGACTGAAAA TC
GG TCTC TAAGCGCT AGACTAGG ACTGAAAATC
GGTCTCTAAG CGCTAGACT AGGACTGAAAATC




Genome assembly

Contigs

Contigs with mapped read pairs

Scaffolds —— | N\ N N NN

Chromosome

NNNNNN



Genome assembly: coverage

Coverage it is a short for average coverage: the average number of reads covering a position in the genome

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC 32 nucleotides
GGTCTCTA
GGTCTCTAAG
AAGCGCTAGACTA
AAGCGCTAG
GCGCTAGAC :
CCCOTACACTAGG 95 nucleotides
AGGACTGAAA
AGGACTGAAAA
GGACTGAAAATC

» Average coverage = 95 / 32 = 3x

Dp,




Genome assembly: coverage

Coverage can also refer to the number of reads covering a particular position in the genome

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC
GGTCTCTA
GGTCTCTAAG
AAGCGCTAGACTA
AAGCGCTAG
GCGCTAGAC
GCGCTAGACTAGG
AGGACTGAAA
Y CICVNOR R CYVAVAVA
. GGACTGAAAATC

Coverage at this position = 2

Coverage at this position = 5

Coverage at this position =

Dp,



Genome assembly: overlapping reads

Let’s assume that two reads truly originate from the same genomic region.
Why might there be a difference?

AAGCGC AGACTA
AAGCGC AG
GCGC AGAC
GCGC AGACTAGG




Genome assembly: overlapping reads

Let’s assume that two reads truly originate from the same genomic region.
Why might there be a difference?

AAGCGC AGACTA
AAGCGC AG
GCGC AGAC
GCGC AGACTAGG

1. Sequencing error

2. Difference between inherited copies of a chromosome

Maternal chromosome AAGCGC AGACTA
Paternal chromosome AAGCGC AGACTA

Dp,



Two approaches to genome assembly

 Overlap-Layout-Consensus (OLC) - string graph assemblers

 construct overlap graph directly from reads, eliminating redundant reads;

 trace path in graph for assembly

« examples: Arachne, Canu, Celara Assembler, HiCanu, SGA (String Graph Assembler)
 de Bruijn graph assemblers

e construct k-mer graph from reads; original reads are discarded

 trace path in graph for assembly

e examples: ABySS, Euler, EULER-SR, SOAPdenovo, Velvet

Dp,




oLc DBG
\

Overlap Error correction

Layout de Bruijn graph

Consensus Refine

Scaffolding



Genome assembly - OLC approach

Reads

Build overlap graph

Overlap
Bundle stretches of the

overlap graph into contigs

Layout
Pick most likely nucleotide

sequence for each contig

Consensus

Dp,



Building overilap graph

Finding all overlaps is similar to building a directed graph where
directed edges connect overlapping nodes (reads)

AGACTAGGACTG

AGACTAGGACTG
AGGACTGAAAATC
CGCTAGACT
TCTCTAAGCGCTAGA
Suffix of one read is similar
AGGACTGAAAATC

to a prefix of another read




An overlap graph, where an overlap is a suffix/prefix match of at
least 5 characters

A vertex i1s a read, a directed edge is an overlap between suffix of source and prefix of sink.

Vertices (reads): {a: CGCTAGACT, b: AGACTAGGACTG, c: AGGACTGAAAATC}

Edges (overlaps): {(a,b),(b,c)}

O !
CGCTAGACT | — |AGACTAGGACTG| — | AGGACTGAAAATC

CGCTAGACT AGACTAGGACTG
AGACTAGGACTG AGGACTGAAAATC







Genome assembly - OLC approach

o Efficient computation of all read overlaps is a key to success

* Finding overlaps is computationally demanding and OLC-based assembly
tends to be slow.

 For example assembly of a human genome after lllumina (short read)
sequencing with 1.2 billion reads took 1427 CPU-hours or 140 hours of real
time using SGA assembler

Dp,



Genome assembly - de Bruijn graph

k-mer Is a substring of length k mer - from Greek meaning “part”

S: AGACTAGGACTG

All 4-mers of S AGAC AGA All 3-mers of S
GACT GAC
ACTA ACT
CTAG CTA
TAGG TAG
AGGA JAYEYAY
GGAC GGA
GACT GAC
ACTG ACT

CTG




Unknown target genome
- ATGCTATGCGT

D CTATGC o) |ATGC TGCT GCTA CTAT
7 ATGCGT TATG ATGC TGCG GCGT
| | / ATGC — ATG,TGC
k-mer (k=1)-mer
de Bruijn Graph

"1 Eulerian path

-

TATG

TAT

Continuous linear stretches within the graph

Assembler keeps information about reads coverage for each k-mer/node. Flicek & Birney (2009) Nat Meth, 6: S6-S12.



Linear Stretch

———————— —_—— GATT

/ N T

TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC AGAT

9X) [*1 B8X) [*1 6X) [*1 6X) [*1 X)) [*1 ™) [*1 (™ [« (8X) [*1 (8X) [*
GCTC TCTA CTAG
4

TAGT AGTC GTCG TCGA CGAG GAGG AGGC GGCT TAGA
3X) ™™ (7% ™ 9xX) ™ (10X 8X) ™ (16X) ™ oaex) ™™ (a2x) ™ (16X)

GCTT CTTT TTTA TTAG
@) ™ X ™ 66X ™ 2%

AGAA |a—

GAGA AGAG
(12X) [* (%) [

ACAG GACA AGAC
(5X) (8X) - (9X)

,‘\ B i

— ———
—— ——

Linear Stretc

Graph is simplified to combine nodes that are associated with the continuous linear stretches into single, larger
nodes of various k-mer sizes.

Error correction removes the tips and bubbles that result from sequencing errors.
Sequencing errors are low frequency tips in the graph.

Flicek & Birney (2009) Nat Meth, 6: S6-S12.



Genome assembly - de Bruijn

e de Bruijn graph approach limitations

e reads are immediately split into shorter k-mers and
consequently cannot resolve repeats very well

 they don’t deal with sequencing errors very well

e reads coherence is lost and some paths through de Bruijn graph
are inconsistent with respect to input reads.

Dp,



Comparison of OLC and de Bruijn graph assembly

Assembly statistics for Caenorhabditis elegans dataset (33.8M 100-nt read pairs)

SGA Velvet

(OLC) (de Bruijn)
Contig N50 size 16.8 kb 13.6 kb
Scaffold NS5O size 26.3 kb 31.3 kb
Sum alighed contig size 96.8 Mb 96.2 Mb
Reference bases covered 96.2 Mb 94.8 Mb

Mismatch rate at assembled bases Tper21.b kb 1per 8.8 kb

Total CPU time 41 hours 2 hours

4.5 GB 23 GB

Genome Res. 2012. 22: 549-556




Assembly evaluation - NS5O

If one orders the set of contigs produced by the assembler by size, then N50 is the size
of the contig such that 50% of the total bases are in contigs of equal or greater size.

15+12+9+7+6+5+2 = 56
56/2 =28 -> N50is 9kb (15+12 = 27 1s less than 50%)




CHALLENGE: HOW FROM THIS...

TGCATCGATCGTAGCTAGCTAGCGCATGCTAGCTAGCTAGCTAGCTACGATGCATCG
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG
CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGLCGCGTAGCTAGTGCTAGCTAGTC
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT
AGCTAGTGTAGCTAGCTAGCATGCTGCTAGCATGCAGCATGCATCGGGCGCGATGCT
GCTAGCGCTGCTAGCTAGCTAGCTAGCTAGGCGCTAATTATTTATTTTGGGGGGTTA
AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCACATGATGATCGTTAGTAGCTACT
AGCTCTCATCGCGCGGGGGEGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT
AAAGACCCCATCTCTCTCTCTTTTCCCTTCTCTCGCTAGCGGGCGGTACGATTTACC
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGLCGCGTAGCTAGTGCTAGCTAGTC
AGCTCTCATCGCGCGGGGGEGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT



UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly
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What are we looking
1 {o] s

e protein-coding genes
* RNA-coding genes

e gene promoters
 regulatory elements

* repetitive elements including
transposons




Annotation workflow

Transcript Assembly Construction
E>

Annotation Plpelme

Repeat Structural Genome
Annotation Annotation Annotation




Annotation workflow
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‘ Transcript Assembly Construction E

E> Trimming Aligning

Annotation Plpelme

Repeat Structural Genome
Annotation Annotation Annotation




Transcriptome assembly

' Reference-based RNA-seq f De novo
Reads cleanup

Splice-aware alignment

to a reference genome
TopHat, STAR

De novo transcriptome
assembly
SOAPdenovo-trans,
Trans ABYSS, Trinity

Transcripts reconstr.

Cufflinks, Scripture

Post-assembly analyses: assembly QC
assessment, abundance estimation, diffe-
rential expression analysis, gene structure

identification, functional annotation




Align RNA-seq reads to a reference

Refereﬂ()e'based genome and find splice junctions
transcriptome using TopHat
assembly l

Assemble transcriptis based
on aligned reads with Cufflinks
- Comprehensive set of
| transcripts including isoforms

Op,

Tuxedo Suite




Transcript assembly
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Transcript assembly

: Potential :
Potential exon _ Potential exon
INtron

GT AG
Reference contig

Assembled transcript

Op,
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Miss- assembly

wrong contig fragments order

missing pieces of DNA




Miss- assembly

“Inversion’”




Gene on different contigs

— N .
MRNA fragment missing from the assembly

Dp,



Annotation workflow

Transcript Assembly Construction

Annotation Pipeline

S
ZENY) - -

‘»"’/ | Re peat \ Structural Genome
Annotation F; Annotation Annotation
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TE-content in different genomes

00

67.5

45

22.5

O

l_lnll

E. coli Arabidopsis Maize C.elegans Fugu  Zebrafish Chicken Mouse  Human



Class |

Retroviruses

oDy, | LTR ‘ gag H pol H env TR (122

LTR elements

—)TSD ‘ LTR gag pol LTR ‘—)TSD

DIRS

—)TS D ‘ﬂR ‘ gag H YR ‘ﬂR \—)TSD

PLE - Penelope-like elements

.
ﬂ)‘ TR ‘ RT H EN TR \@)

LINES

EN T | D
SINEs

150, -
SVAs

13Dy, fecerem] “Alu-like [FUNTR [ SiNe-R | pona 22y
Retrogenes

TSDy, ] RS ponA‘TSD)

Class |: Retrotransposons

“copy-and-paste” transposition

Class Il: DNA transposons

“cut-and-paste” transposition

Both classes are represented by autonomous

and non-autonomous elements

Class Il - subclass 1

1

classical” autonomous DNA transposons

—)T'R TRANSPOSASE (—T'R
“classical” nonautonomous DNA transposons

TIR ) (TIR

Class Il - subclass 2

Helitrons

TC HELICASE, (rpal) CTRR
Mavericks

TDS) TIR 3| Pint e >olB <TIR TDS)




Identification of repeats

Op,

Similarity-based
e RepeatMasker

e Censor

De novo

e self-comparison approach
(RECON, PILER, BLASTER)

e k-mer approach: sequences are
scanned for overrepresentation
of strings of certain length
(REPuter, Vmatch, RepeatScout)

e RepeatModeler2 - a pipeline that
combines different approaches

and software, such as
RepeatScout and RECON




Classification of TEs

Approach Target TEs Software (reference collection)
General Censor (RepBase, custom library)
Similarity-based
General Repeat Masker (RepBase, Dfam, custom library)
LTR LTR_STRUG, LTR_par, find_LTR, LTR_FINDER,
transposons LTRharvest
Signature-based MITEs FINDMITE, MUST
Helitrons HelitronFinder, HelSearch

TEclass (binary classification of TE types)

Machine | ' G |
achine learning  (Genera TERL (neural networks)

Dp,




Annotation workflow

Transcript Assembly Construction

GeNow

Annotation Pipeline

Repeat 4 Structural } Genome
Annotation § Annotation Annotation




Structural annotation

To determine position and structure of different genomic elements:

* RNA coding genes (ncRNA genes)

« tRNA, snRNA, IncRNA, rRNA, etc.
e Protein coding genes
* Promoters

 Long-range regulatory elements

 enhancers, repressors/silencers.
Insulators

Dp,



Different approaches

Molecular techniques

quite laborious

time consuming

relatively expensive

low rate false positive

relatively high rate of false
negatives

comprehensive approach in large-
scale projects, e.g. ENCODE

Computational methods

fast

relatively low cost

high rate of false positives

poor performance on less typical
genes

usually only coding sequence
(CDS) can be determined




Structural annotation

RNA coding genes (ncRNA genes)

e« tRNA, shRNA, rRNA, IncRNA, etc.

e usually secondary structure more
conserved than nucleotide sequence

e covariance and HMM models work
very well

* specialized software (tRNA-scan) or
more generic, e.g infernal

b
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General model of protein-coding gene

Intergenic Coding
: —> | Start — —| Stop
region sequence

Dp,



General model of protein-coding gene

Intergenic Coding
_ — | Start S —>| Stop
region sequence

Prokaryotic gene structure

Intergenic O : 3’ Intergenic
P t ATG series of codons Sto

Dp,




General model of protein-coding gene

Intergenic Coding
_ — | Start S —>| Stop
region sequence

Eukaryotic gene structure

Intergenic Intergenic
_ Promoter |Exon|Intron |Exon|Intron Exon _
region region

Dp,




Eukaryotic gene structure

(exon-intron-exon)  structure of vanous genes

histone s N —_
total = 400 bp:; exon = 400 bp

- ]
B~ e

total = 1.660 bp:; exons = 990 bp

plofeniliioalel —— —H—+—+—+—H——
(HPRT) .
total = 42,830 bp;: exons = 1263 bp

factor VIiiIl - |
B T ——————
total = ~186, 000 bp: exons = ~9, 000 bp




Gene finding methods

coding/non-coding

sequence
discrimination

— N

based on
model based similarity to known
genes

sequence | | | _
- signals transcripts proteins conservation
composition

homology based

multi-genome

approach




Gene finding methods

We take advantage of what we already learned
about gene structures and features of coding
sequences. Based on this knowledge we can
build theoretical model, develop an algorithm
to search for important features, train it on
known data and use to search for coding
sequences In anonymous genomic fragments.

However, we should remember that all models
are wrong, but some are useful.

George E. P. Box




How to build the model

Basically, we can only discriminate between
coding and non-coding sequences.

We can check if sequence in particular ORF has
some other features, which could tell us if this is a
putative coding sequence or the ORF is false
positive. We can look at the sequence content and
compare it with known coding sequence and non-
coding sequence and check to which of these two
the ORF sequence is more similar to.
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We can also model some regulatory signals,
such as promoters, transcription binding sites,
splicing signals, etc.
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Hidden Markov Models

« HHM is a statistical model for an ordered sequence of symbols, acting as a
stochastic state machine that generates a symbol each time a transition is
made from one state to the next. Transitions between states are specified
by transition probabilities. A Markov process is a process that moves from
state to state depending on the previous n states.

e HHM has been previously used very successfully for speech recognition.

 |[n biology 1t Is used to produce multiple sequence alignments, In generating
sequence profiles, to analyze sequence composition and patterns, to
produce a protein structure prediction, and to locate genes.

 |[n gene identification HMM is a model of periodic patterns in a sequence,
representing, for example, patterns found in the coding parts of a gene.
HMM provides a measure of how close the data pattern in the sequence
resemble the data used to train the model.



Markow chains

A Markov Chain is a non-deterministic system in which it is assumed that the
probability of moving from one state to another doesn’t vary with time. This
means the current state and transition does not depend on what happened
In the past. The Markov Chain i1s defined by probabilities for each occurring

transition.
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Markow chains

In a sequence analysis we |look
at probabilities of transitions
from one nucleotide to
another. We can check, for
example, iIf certain patterns
of transition are more
frequent In coding sequences
than in non coding sequences.
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Order of Markov chains

GCGCTACCGCCGATCATCTACTCG  Zeroorder - the current

nucleotide is totally independent
of the previous nucleotide.

For example, a probability of “G”
In a given sequence.




Order of Markov chains

GCGCTAUCGCCGATCATCTACTCG
GCGCTNOCGCCGATCATCTACTCG  First order - the current

nucleotide only depends on the
previous nucleotide.

For example, a probability of
having “G” in the sequence if the
previous nucleotide is “A”.

Op,



Order of Markov chains

GCGCTAUCGCCGATCATCTACTCG
GCGCTOCGCCGATCATCTACTCG
GCGC I "GCGCCGATCATCTACTCG

Dp,

Second order - the current
nucleotide depends on the
previous two nucleotides.

For example, a probability of
having “G” in the sequence if the
previous nucleotides are “TA”.



Order of Markov chains

GCGCTA - CGCCGATCATCTACTCG
GCGCT ' :CGCCGATCATCTACTCG
GCGC | GCGCCGATCATCTACTCG
G ( |/\GCGCCGATCATCTACTCG Fifth order - the current

nucleotide depends on the
previous five nucleotides.

For example, a probability of
having “G” in the sequence if the
previous nucleotides are “CGCTA”.

Dp,



How far we can go?

e Order of our model will have
Influence on specificity and
sensitivity of our program.

e Too short sequences may not be
specific enough and program may
return a lot of false positives.

e Long chains may be too specific and
our program will not be sensitive
enough returning false negatives.
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Order of Markov chains

GCGCTAGCGCCGATCATCTACTCG
SCHECTAGLCHCCHATCATCTACTCH First order - the current

nucleotide only depends on the
previous nucleotide (a probability
of having “G” in the sequence if

In our example the sequence is 24 nt long.
the previous nucleotide is “A”)

For “G” we would have the following

probability matrix:
p(G,A) =1/23 =0.043

0(G,T)=0/23=0
»
0(G,C) =4/23 =0.174

b% 0(G,G) =0/23=0




Probability matrix

Number of probabilities in a DNA matrix of a given order can be
calculated according to the following formula:

where /| represents number of letters in the DNA alphabet and - stands
for the order number.

Hence, first order Markov Model matrix consists of 42 = 16 probabilities
p(A/A), p(A/T), p(A/C), p(A/G),
p(T/A), p(T/T), p(T/C), p(T/G),
b p(C/A), p(C/T), p(C/C), p(C/G),
= p(G/A), p(G/T), p(G/C), p(G/G)




Probability matrix

Frequencies of transitions may depend on in which codon position (1st,
ond, or 3rd) 1s a given nucleotide (state). This increases number of
probabilities to be calculated. For first order Markov chains it would be:

3 (4171) =3x42=48

Codon position 1 Codon position 2 Codon position 3
A C G T A C G T A C G T
.36 .27 .35 .18 A .16 .19 .15 .0/ A .22 .33 .24 .13

21 .23 .24 27 C .28 .44 41 .33 C .21 .29 27 .21
19 .14 .23 .23 40 .12 .27 .45 44 15 .37 .53
24 .35 .19 31 16 .25 .17 .16 13 .22 .12 .13




Calculating coding potential of a sequence

To estimate if the sequence (S) 1s coding we have to calculate probability that
sequence is coding (P.) and probability the sequence is non-coding (Pnc). Next we
calculate logarithm from the ratio of these two probability values.

Pc (S)
Pnc (S)

LP(S) = log

If the calculated value 1s > 0 the likelihood that the sequence is coding is higher than
the sequence 1s not coding, if value is < 0 there is higher likelihood that sequence is
not coding.

Dp,




Coding versus non-coding sequence

A/ A C/A G/A T/A coding
0.36 0.21 0.19 0.24

A/A C/A G/A T/A non-coding*
0.25 0.25 0.25 0.25

* it 1s common to assume that probability of each transition
is equal but it would be more realistic to use nucleotide
frequencies of the analyzed sequence




Coding versus non-coding sequence

i
Codon position 1 Codon position 2 Codon position 3

LP(S)ZlogP_(& A C G T A C G T A C G T
P({S) 36 .27 .35 .18 16 .19 .15 .07 22 .33 .24 13

21 .23 .24 .27 28 .44 41 .33 21 .29 .27 .21
A9 .14 .23 .23 A0 .12 .27 A5 44 15 .37 .53

S_AG GACG 24 35 .19 31 16 .25 .17 .16 A3 .22 .12 .13

P(S) =f(A,1)F(G.A)F(G,G)F(A.G)F(C.A)F(G.C)
P(S)=0.27x0.19x 0.27 x 0.24 x 0.21 x 0.12 = 0.00008377

P(S)=0.25x0.25x0.25x0.25x0.25 x 0.25 =0.0002441

LP(S) = 10g(0.00008377/0.0002441) = -0.4644

* in the case of the first position in the analyzed sequence we put the frequency of
a particular letter in the analyzed genome




Coding versus non-coding sequence

Codon position 1 Codon position 2 Codon position 3

LP(S)—IOg_(& A C G T A C G T A C G T
P (‘S) 36 .27 .35 .18 16 .19 .15 .07 22 .33 .24 .13

21 .23 .24 .27 28 .44 41 33 21 .29 .27 .21
19 .14 23 .23 A0 .12 .27 .45 44 15 37 .53

S= AGG ACG 24 .35 .19 .31 16 .25 .17 .16 13 .22 .12 .13

0.19 0.27

0.24
025" 1990 25

0.25

0.27

021 ., 012
+
0.25 09°0 55

+
09055 0.25

LP(S) = log + log + log

LP(S)=1log 1.08 + log 0.76 + log 1.08 + log 0.96 + log 0.84 + log 0.48

LP(S) = 0.0334 + (-0.1191) +0.0334 + (-0.0177) + (-0.0757) + (-0.3187)

LP(S) = -0.4644
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Eukaryotic model of protein-coding gene

Start
Exon|Intron | Exon|Intron Exon Sto

coding coding coding

non-coding non-coding

In this case we do not want check if a given sequence fragment is coding or not
but we rather want to identify coding fragments in a long sequence. In most
cases, this is done by calculating statistics in overlapping windows.

Dp,




Eukaryotic model of protein-coding gene

AGTACGATATTAGCGGCAATCGTATGACTACGTCITGCTACGICTTCTCTCGTCTGCTCTAG

This example shows a profile for a
sequence analyzed using a 120-bp
window and a 10-bp step.




Rule-based methods

Minimal Splicing Coding

Putative
length ORF sites

potential exons
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Annotation workflow

Transcript Assembly Construction

Annotation Pipeline

Repeat Structural Genome
Annotation Annotation Annotation

Op,



Gene Model Mapper (GeMoMa)

Reference genome &
GFF annotation

Target genome

1\ makeblastdb
extract coding exons
as protein sequences

" create genome index

blast against
target genome

-,

GeneModelMapper)\
z build transcript models J |
AN

Keilwagen et al. BMC bioinformatics, 19(1):189, 2018

RNA-seq reads mapped

to target genome

Extract
RNA-seq evidence

extract intron &
coverage information
from BAM file(s)

GeMoMa
| Annotation Filter

merge & filter
gene/transcript models

Final gene models



GeMoMa annotation of Pogonomyrmex californicus

Pogonomyrmex 19,128 14,851 12,865
barbatus
Solenopsis invicta 21,118 14,160 3,697
Camponotus

: 18,824 13,769 2,549
floridanus
Apis melifera 22,451 10,752 1,096

Number of merged GeMoMa predictions 20,170




Annotation workflow

Transcript Assembly Construction
!:> Trimming Aligning

Annotation Plpelme

Repeat Structural Genome
Annotation Annotation A z Annotation




Functional annotation

The functional annotation of the detected genes includes protein
1dentifications based on similarities to well annotated proteins, their
molecular function (GO-annotation) and pathways they are involved in.

This is usually done based on a series of similarity searches against well
annotated databases.

e Uniprot
« NCBI Refsec collection
« Pfam or other protein domains database

O% . KEGG



Functional annotation of 27,264 of
Pogonomyrmex californicus proteins

Detected Unknown

Run Database DB size _ _
functions proteins
1 Uniport 557,992 12,615 14,649
2 Refseq 12,578 1849 12,800
(Pogonomyrmex)
3 NCBI nr 181,118,669 2148 10,653
\ Final 16,612 10,653

Dp,



Annotation workflow

Transcript Assembly Construction Annotation
evaluation

GENOME Annotation from relatives
Annotation Pipeline

Repeat Structural Id Genome
Annotation Annotation 1 Annotation
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Genome assembly and annotation
evaluation

Benchmarking Universal Single-Copy Orthologs (BUSCO) is a tool for
measure the completeness of genome assembly data, annotated gene
sets or transcriptomes in terms of expected gene content while
comparing the data to core sets of orthologous groups with genes
present as single-copy orthologs.

Dp,



P. californicus

P. barbatus

S. invicta

C. floridanus

A. mellifera

BUSCO Assessment Results
of Genome Assemblies

. Complete (C) and single-copy (S) - Complete (C) and duplicated (D)
Fragmented (F) - Missing (M)

10
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Hymenoptera specific single-copy orthologous genes from OrthoDB (v.9) [%]
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BIOINFORMATICS CREED

Remember about biology
Do not trust the data

Use comparative approach
Use statistics

Know the limits

Remember about biology!!!
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