

GETTING SEQUENCES IS EASY

CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG CGCGCGCATTATGCCGCGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCCACATGATGATCGTTAGTAGCTACT CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG

GETTING SEQUENCES IS EASY -RELATIVELY

The shortest human chromosome (21) is 45.1 Mb long

The longest single read achieved so far is "only" 4 Mb long. It was obtained using nanopore technology

Sequence assembly

Sequence assembly

- A fundamental goal of DNA sequencing is to generate large, continuous regions of DNA sequence – CONTIGS
- In principle, assembling a sequence is just a matter of finding overlaps and combining them.
- In practice:
 - most genomes contain multiple copies of many sequences,
 - there are random mutations (either naturally occurring cell-to-cell variation or generated by PCR or cloning),
 - there are sequencing errors

Genome assembly

- Whole-genome shotgun sequencing starts with copying (NGS) and fragmenting the DNA

Source material

Copies

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC GGTCTCTAAGCGCTAGACTAGGACTGAAAATC GGTCTCTAAGCGCTAGACTAGGACTGAAAATC GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

Fragments

GGTCT CTAAGC GCTAGACTAGGACTG AAAATC GGTCTCTAAGC GCTAGACTAGGACTGAAAA TC GG TCTC TAAGCGCT AGACTAGG ACTGAAAATC GGTCTCTAAG CGCTAGACT AGGACTGAAAATC

• "Shotgun" refers to the random fragmentation of the whole genome; like it was fired from a gun

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

Genome assembly: coverage

Coverage it is a short for *average coverage*: the average number of reads covering a position in the genome

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC GGTCTCTAAG AAGCGCTAGACTA AAGCGCTAGAC GCGCTAGAC GCGCTAGACTAGG AGGACTGAAAA AGGACTGAAAA GGACTGAAAAA

Average coverage = 95/32 = 3x

32 nucleotides

95 nucleotides

е

8

Genome assembly: coverage

Coverage can also refer to the number of reads covering a particular position in the genome

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC GGTCTCTA GGTCTCTAAG AAGCGCTAGACTA Coverage at this position = 2AAGCGCTAG GCGCTAGAC GCGCTAGACTAGG AGGACTGAAA AGGACTGAAAA GGACTGAAAATC Coverage at this position = 4

Coverage at this position = 5

Genome assembly: overlapping reads

Let's assume that two reads truly originate from the same genomic region. Why might there be a difference?

> AAGCGCTAGACTA AAGCGCAAG GCGCAAGAC GCGCTAGACTAGG

Genome assembly: overlapping reads

Let's assume that two reads truly originate from the same genomic region. Why might there be a difference?

> AAGCGCTAGACTA AAGCGCAAG GCGCAAGAC GCGCTAGACTAGG

1. Sequencing error

2. Difference between inherited copies of a chromosome

Maternal chromosome AAGCGCTAGACTA Paternal chromosome AAGCGCAAGACTA

Two approaches to genome assembly

- Overlap-Layout-Consensus (OLC) string graph assemblers
 - construct overlap graph directly from reads, eliminating redundant reads;
 - trace path in graph for assembly
 - examples: Arachne, Canu, Celara Assembler, HiCanu, SGA (String Graph Assembler)
- de Bruijn graph assemblers
 - construct k-mer graph from reads; original reads are discarded
 - trace path in graph for assembly
 - examples: ABySS, Euler, EULER-SR, SOAPdenovo, Velvet

Genome assembly - OLC approach

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Building overlap graph

Finding all overlaps is similar to building a directed graph where directed edges connect overlapping nodes (reads)

Suffix of one read is similar to a prefix of another read

AGACTAGGACTG CGCTAGACT TCTCTAAGCGCTAGA AGGACTGAAAATC

An overlap graph, where an overlap is a suffix/prefix match of at least 5 characters

- Vertices (reads): {a: CGCTAGACT, b: AGACTAGGACTG, c: AGGACTGAAAATC}
- Edges (overlaps): {(a,b),(b,c)}

CGCTAGACT AGACTAGGACTG

A vertex is a read, a directed edge is an overlap between suffix of source and prefix of sink.

AGACTAGGACTG AGGACTGAAAATC

Genome assembly - OLC approach

- Efficient computation of all read overlaps is a key to success
- Finding overlaps is computationally demanding and OLC-based assembly tends to be slow.
 - For example assembly of a human genome after Illumina (short read) sequencing with 1.2 billion reads took 1427 CPU-hours or 140 hours of real time using SGA assembler

Genome assembly - de Bruijn graph

k-mer is a substring of length k

All 4-mers of S

AGAC GACT ACTA CTAG TAGG AGGA GGAC GACT ACTG

mer - from Greek meaning "part"

S: AGACTAGGACTG

All 3-mers of S AGA GAC ACT CTA TAG AGA GGA GAC ACT CTG

Continuous linear stretches within the graph Assembler keeps information about reads coverage for each k-mer/node.

Flicek & Birney (2009) Nat Meth, 6: S6-S12.

Graph is simplified to combine nodes that are associated with the continuous linear stretches into single, larger nodes of various k-mer sizes. Error correction removes the tips and bubbles that result from sequencing errors. Sequencing errors are low frequency tips in the graph.

Genome assembly - de Bruijn

• de Bruijn graph approach limitations

- reads are immediately split into shorter k-mers and consequently cannot resolve repeats very well
- they don't deal with sequencing errors very well
- reads coherence is lost and some paths through de Bruijn graph are inconsistent with respect to input reads.

Comparison of OLC and de Bruijn graph assembly

Assembly statistics for Caenorhabditis elegans dataset (33.8M 100-nt read pairs)

Contig N50 size Scaffold N50 size Sum aligned contig size **Reference bases covered Mismatch rate at assembled Total CPU time** Max memory usage

	SGA	Velvet	
	(OLC)	(de Bruijn)	
	16.8 kb	13.6 kb	
	26.3 kb	31.3 kb	
	96.8 Mb	95.2 Mb	
	96.2 Mb	94.8 Mb	
bases	1 per 21.5 kb	1 per 8.8 kb	
	41 hours	2 hours	
	4.5 GB	23 GB	

Genome Res. 2012. 22: 549-556

Assembly evaluation - N50

15+12+9+7+6+5+2 = 5656/2 = 28 -> N50 is 9kb (15+12 = 27 is less than 50%)

If one orders the set of contigs produced by the assembler by size, then N50 is the size of the contig such that 50% of the total bases are in contigs of equal or greater size.

CHALLENGE: HOW FROM THIS...

CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCCACATGATGATCGTTAGTAGCTACT CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG

track search default tracks default order hide all add custom tracks track hubs configure multi-region reverse resize refresh

What are we looking for?

- protein-coding genes
- RNA-coding genes
- gene promoters
- regulatory elements
- repetitive elements including transposons

-

Annotation workflow

Annotation workflow

Transcriptome assembly

Reference-based

Splice-aware alignment to a reference genome TopHat, STAR

Transcripts reconstr. Cufflinks, Scripture

Post-assembly analyses: assembly QC assessment, abundance estimation, differential expression analysis, gene structure identification, functional annotation

Reference-based transcriptome assembly

Tuxedo Suite

Align RNA-seq reads to a reference genome and find splice junctions using *TopHat*

Assemble transcriptis based on aligned reads with *Cufflinks*

Comprehensive set of transcripts including isoforms

Transcript assembly

Potential

Reference contig

Potential	Potential	Potential	Potential
intron	exon	intron	exon
• • • • • • • • • • • • • • • • • • •		•••••	

Transcript assembly

Potential

exon

Reference contig

Splicing signals

33

Transcript assembly

Potential exon

Reference contig

Assembled transcript

Do we need *de novo* transcript assembly if we have a genome sequenced?

Miss-assembly

wrong contig fragments order

Miss-assembly

"inversion"

Gene on different contigs

mRNA fragment missing from the assembly

Annotation workflow

Type of repeats

• Simple repeats

- e.g. (AT)n, (TCT)n, microsatellites, etc.
- Interspersed repeats
 - Gene families, e.g. rRNA-coding
 - Transposable elements
- Low complexity regions

Class I

Class I: Retrotransposons

"copy-and-paste" transposition

Class II: DNA transposons

"cut-and-paste" transposition

Both classes are represented by autonomous and non-autonomous elements

Class II - subclass 1

Identification of repeats

Similarity-based

- RepeatMasker
- Censor

De novo

- self-comparison approach (RECON, PILER, BLASTER)
- k-mer approach: sequences are scanned for overrepresentation of strings of certain length (REPuter, Vmatch, RepeatScout)
- RepeatModeler2 a pipeline that combines different approaches and software, such as RepeatScout and RECON

Cla	ssificati	on of			
	Approach	Target TEs	S		
	Similarity bood	General	C		
	Similarity-pased	General	F		
		LTR	L		
		transposons			
	Signature-based	MITEs	F		
		Helitrons			
	Machine learning	General	T T		

ES

- Software (reference collection)
- Censor (RepBase, custom library)
- Repeat Masker (RepBase, Dfam, custom library)
- TR_STRUC, LTR_par, find_LTR, LTR_FINDER, TRharvest
- INDMITE, MUST
- HelitronFinder, HelSearch
- ⁻Eclass (binary classification of TE types)
 ⁻ERL (neural networks)

Annotation workflow

Structural annotation

- To determine position and structure of different genomic elements:
- RNA coding genes (ncRNA genes)
 - tRNA, snRNA, IncRNA, rRNA, etc.
- Protein coding genes
- Promoters
- Long-range regulatory elements
 - enhancers, repressors/silencers. insulators

Different approaches

Molecular techniques

- quite laborious
- time consuming
- relatively expensive
- low rate false positive
- relatively high rate of false negatives
- comprehensive approach in largescale projects, e.g. ENCODE

Computational methods

- fast
- relatively low cost
- high rate of false positives
- poor performance on less typical genes
- usually only coding sequence
- (CDS) can be determined

Structural annotation

RNA coding genes (ncRNA genes)

- tRNA, snRNA, rRNA, IncRNA,
- usually secondary structure r conserved than nucleotide secondary
- covariance and HMM models very well
- specialized software (tRNA-sc more generic, e.g infernal

	$ \begin{array}{ccc} G & C & A \\ U & U \\ U & A \end{array} \leftarrow U \\ \begin{array}{c} U \\ C - G \end{array} \end{array} $	
etc.	C-G U U U U C-G U-A	
nore quence	$\begin{array}{c} C-G\\ G-C\\ G-U\\ A\\ G\\ G\\ W\\ C\\ \end{array}$	UC U G G-C
work	$G-C$ $G-C$ $G-C$ $G-C$ $A^{A}A_{G}$ $A-U$ $A GCGGU UCCUCC GCGA AUACCC C U A$ $A A$ $A A$	C-G G-C A-U C A A A-U G-C
can) or	UAGUUAGUUAGUU U-A G-C C-G G*U AUACUUACCUG AUAAUUUUUGAU	G-C G-C C-G X*G A G U

Computational prediction of protein-coding genes

General model of protein-coding gene

General model of protein-coding gene

Prokaryotic gene structure

conice of codone	Ston	3'	Interge	
Series di Coudiis	Stop	UTR	regio	

nic

General model of protein-coding gene

Eukaryotic gene structure

Intergenic region Promoter Exon Intron Exon Intron Exon Exon

enic

Eukaryotic gene structure

(exon-intron-exon)_n structure of various genes

Gene finding methods

We take advantage of what we already learned about gene structures and features of coding sequences. Based on this knowledge we can build theoretical model, develop an algorithm to search for important features, train it on known data and use to search for coding sequences in anonymous genomic fragments.

However, we should remember that all models are wrong, but some are useful.

George E. P. Box

How to build the model

Basically, we can only discriminate between coding and non-coding sequences.

We can check if sequence in particular ORF has some other features, which could tell us if this is a putative coding sequence or the ORF is false positive. We can look at the sequence content and compare it with known coding sequence and noncoding sequence and check to which of these two the ORF sequence is more similar to.

We can also model some regulatory signals, such as promoters, transcription binding sites, splicing signals, etc.

Hidden Markov Models

- state to state depending on the previous n states.
- sequence profiles, to analyze sequence composition and patterns, to produce a protein structure prediction, and to locate genes.
- resemble the data used to train the model.

• HHM is a statistical model for an ordered sequence of symbols, acting as a stochastic state machine that generates a symbol each time a transition is made from one state to the next. Transitions between states are specified by transition probabilities. A Markov process is a process that moves from

• HHM has been previously used very successfully for speech recognition.

• In biology it is used to produce multiple sequence alignments, in generating

• In gene identification HMM is a model of periodic patterns in a sequence, representing, for example, patterns found in the coding parts of a gene. HMM provides a measure of how close the data pattern in the sequence

Markow chains

A Markov Chain is a non-deterministic system in which it is assumed that the probability of moving from one state to another doesn't vary with time. This means the current state and transition does not depend on what happened in the past. The Markov Chain is defined by probabilities for each occurring transition.

Markow chains

In a sequence analysis we look at probabilities of transitions from one nucleotide to another. We can check, for example, if certain patterns of transition are more frequent in coding sequences than in non coding sequences.

GCGCTAGCGCCGATCATCTACTCG

Zero order - the current nucleotide is totally independent of the previous nucleotide. For example, a probability of "G" in a given sequence.

GCGCTAGCGCCGATCATCTACTCG GCGCTAGCGCCGATCATCTACTCG

First order - the current nucleotide only depends on the previous nucleotide. For example, a probability of having "G" in the sequence if the previous nucleotide is "A".

GCGCTAGCGCCGATCATCTACTCG GCGCTAGCGCCGATCATCTACTCG

Second order - the current nucleotide depends on the previous two nucleotides. For example, a probability of having "G" in the sequence if the previous nucleotides are "TA".

GCGCTAGCGCCGATCATCTACTCG GCGCTAGCGCCGATCATCTACTCG GCGCTAGCGCCGATCATCTACTCG

Fifth order - the current nucleotide depends on the previous five nucleotides. For example, a probability of having "G" in the sequence if the previous nucleotides are "CGCTA".

How far we can go?

- Order of our model will have influence on specificity and sensitivity of our program.
- Too short sequences may not be specific enough and program may return a lot of false positives.
- Long chains may be too specific and our program will not be sensitive enough returning false negatives.

GCGCTAGCGCCGATCATCTACTCG GCGCTAGCGCCGATCATCTACTCG

In our example the sequence is 24 nt long. For "G" we would have the following probability matrix:

p(G,A) = 1/23 = 0.043p(G,T) = 0/23 = 0p(G,C) = 4/23 = 0.174p(G,G) = 0/23 = 0

First order - the current nucleotide only depends on the previous nucleotide (a probability of having "G" in the sequence if the previous nucleotide is "A")

Probability matrix

Number of probabilities in a DNA matrix of a given order can be calculated according to the following formula:

where 4 represents number of letters in the DNA alphabet and k stands for the order number.

Hence, first order Markov Model matrix consists of $4^2 = 16$ probabilities p(A/A), p(A/T), p(A/C), p(A/G),p(T/A), p(T/T), p(T/C), p(T/G),p(C/A), p(C/T), p(C/C), p(C/G),p(G/A), p(G/T), p(G/C), p(G/G)

Probability matrix

Frequencies of transitions may depend on in which codon position (1st, 2nd, or 3rd) is a given nucleotide (state). This increases number of probabilities to be calculated. For first order Markov chains it would be:

Codon position 1	Codon position 2	Codon position 3				
A C G T	A C G T	A C G T				
A .36 .27 .35 .18	A .16 .19 .15 .07	A .22 .33 .24 .13				
C .21 .23 .24 .27	C .28 .44 .41 .33	C .21 .29 .27 .21				
G .19 .14 .23 .23	G .40 .12 .27 .45	G .44 .15 .37 .53				
T .24 .35 .19 .31	T .16 .25 .17 .16	T .13 .22 .12 .13				

$3(4^{1+1}) = 3 \times 4^2 = 48$

Calculating coding potential of a sequence

To estimate if the sequence (S) is coding we have to calculate probability that sequence is coding (P_c) and probability the sequence is non-coding (P_{nc}) . Next we calculate logarithm from the ratio of these two probability values.

If the calculated value is > 0 the likelihood that the sequence is coding is higher than the sequence is not coding, if value is < 0 there is higher likelihood that sequence is not coding.

 $LP(S) = \log \frac{P_{c}(S)}{P_{nc}(S)}$

Coding versus non-coding sequence

- A/A C/A G/A 0.36 0.21 0.19 0.24
- C/A G/A T/A non-coding* A/A0.25 0.25 0.25 0.25

frequencies of the analyzed sequence

- T/A coding

* it is common to assume that probability of each transition is equal but it would be more realistic to use nucleotide

Coding versus non-coding sequence

 $LP(S) = \log \frac{P(S)}{P_0(S)}$

S=AGGACG

 $P(S)^{1} = f(A,1)F(G,A)F(G,G)F(A,G)F(C,A)F(G,C)$ $P(S) = 0.27 \times 0.19 \times 0.27 \times 0.24 \times 0.21 \times 0.12 = 0.00008377$ $P(S) = 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.25 = 0.0002441$ $LP(S) = \log(0.00008377/0.0002441) = -0.4644$

* in the case of the first position in the analyzed sequence we put the frequency of a particular letter in the analyzed genome

Codon position 1			C	Codon position 2						Codon position 3					
	Α	С	G	т		Α	С	G	т			Α	С	G	т
Α	.36	.27	.35	.18	Α	.16	.19	.15	.07		Α	.22	.33	.24	.13
С	.21	.23	.24	.27	С	.28	.44	.41	.33		С	.21	.29	.27	.21
G	.19	.14	.23	.23	G	.40	.12	.27	.45		G	.44	.15	.37	.53
т	.24	.35	.19	.31	Т	.16	.25	.17	.16		т	.13	.22	.12	.13

Coding versus non-coding sequence

$$LP(S) = \log \frac{P(S)}{P_0(S)}$$

S=AGGACG

$$LP(S) = \log \frac{0.27}{0.25} + \log \frac{0.19}{0.25} + \log \frac{0.27}{0.25} + \log \frac{0.24}{0.25} + \log \frac{0.21}{0.25} + \log \frac{0.12}{0.25}$$

LP(S) = 0.0334 + (-0.1191) + 0.0334 + (-0.0177) + (-0.0757) + (-0.3187)

LP(S) = -0.4644

Codon position 1			Codon position 2							Codon position 3					
	Α	С	G	т		Α	С	G	т			Α	С	G	т
Α	.36	.27	.35	.18	A	.16	.19	.15	.07		Α	.22	.33	.24	.13
С	.21	.23	.24	.27	С	.28	.44	.41	.33		С	.21	.29	.27	.21
G	.19	.14	.23	.23	G	.40	.12	.27	.45		G	.44	.15	.37	.53
т	.24	.35	.19	.31	т	.16	.25	.17	.16		т	.13	.22	.12	.13

 $LP(S) = \log 1.08 + \log 0.76 + \log 1.08 + \log 0.96 + \log 0.84 + \log 0.48$

Eukaryotic model of protein-coding gene

coding	coding	
	non-coding	r

In this case we do not want check if a given sequence fragment is coding or not but we rather want to identify coding fragments in a long sequence. In most cases, this is done by calculating statistics in overlapping windows.

coding

non-coding

73

Eukaryotic model of protein-coding gene

This example shows a profile for a sequence analyzed using a 120-bp window and a 10-bp step.

Annotation workflow

Gene Model Mapper (GeMoMa)

Keilwagen et al. BMC bioinformatics, 19(1):189, 2018

GeMoMa annotation of Pogonomyrmex californicus

Reference species	Number of proteins in the reference genome	Number of proteins predicted in the target genome	Number of proteins in the final annotation
Pogonomyrmex barbatus	19,128	14,851	12,865
Solenopsis invicta	21,118	14,160	3,697
Camponotus floridanus	18,824	13,769	2,549
Apis melifera	22,451	10,752	1,095
	Number of merged	20,170	

78

Annotation workflow

Functional annotation

The functional annotation of the detected genes includes protein identifications based on similarities to well annotated proteins, their molecular function (GO-annotation) and pathways they are involved in.

This is usually done based on a series of similarity searches against well annotated databases.

- Uniprot
- NCBI Refsec collection
- Pfam or other protein domains database
- KEGG

80

Functional annotation of 27,264 of *Pogonomyrmex californicus* proteins

Run	Database
1	Uniport
2	Refseq (Pogonomyrmex)
3	NCBInr
	Final

DB size	Detected functions	Unknown proteins
557,992	12,615	14,649
12,578	1,849	12,800
81,118,669	2,148	10,653
	16,612	10,653

Annotation workflow

Genome assembly and annotation evaluation

Benchmarking Universal Single-Copy Orthologs (BUSCO) is a tool for measure the completeness of genome assembly data, annotated gene sets or transcriptomes in terms of expected gene content while comparing the data to core sets of orthologous groups with genes present as single-copy orthologs.

BIOINFORMATICS CREED

Remember about biology Do not trust the data Use comparative approach Use statistics Know the limits Remember about biology!!!

Das liegt dir im Blut!

In der UKM Blutspende kommen alle Blutspenden unmittelbar den Patientinnen und Patienten am UKM zugute – in Münster für Münster!

Für deine Spende erhältst du eine Aufwandsentschädigung!

Domagkstraße 11, 48149 Münster +49 251 83-58000 www.ukm-blutspende.de