
Genome Annotaion



GETTING SEQUENCES IS EASY

TGCATCGATCGTAGCTAGCTAGCGCATGCTAGCTAGCTAGCTAGCTACGATGCATCG 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT 
AGCTAGTGTAGCTAGCTAGCATGCTGCTAGCATGCAGCATGCATCGGGCGCGATGCT 
GCTAGCGCTGCTAGCTAGCTAGCTAGCTAGGCGCTAATTATTTATTTTGGGGGGTTA 
AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCACATGATGATCGTTAGTAGCTACT 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
AAAGACCCCATCTCTCTCTCTTTTCCCTTCTCTCGCTAGCGGGCGGTACGATTTACC 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT



GETTING SEQUENCES IS EASY - 
RELATIVELY

The shortest human chromosome 
(21) is 45.1 Mb long 

The longest single read achieved so 
far is “only” 4 Mb long. It was 
obtained using nanopore technology



Sequence assembly
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• A fundamental goal of DNA sequencing is to generate large, continuous regions of 
DNA sequence – CONTIGS 

• In principle, assembling a sequence is just a matter of finding overlaps and 
combining them. 

• In practice:  

• most genomes contain multiple copies of many sequences,  

• there are random mutations (either naturally occurring cell-to-cell variation 
or generated by PCR or cloning),  

• there are sequencing errors

Sequence assembly



Genome assembly
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• Whole-genome shotgun sequencing starts with copying (NGS) and fragmenting the DNA 

• “Shotgun” refers to the random fragmentation of the whole genome; like it was fired from a gun

Source material GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

GGTCTCTAAGCGCTAGACTAGGACTGAAAATC
GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

GGTCTCTAAG CGCTAGACT AGGACTGAAAATC

GGTCT CTAAGC GCTAGACTAGGACTG AAAATC

GG TCTC TAAGCGCT AGACTAGG ACTGAAAATC
GGTCTCTAAGC GCTAGACTAGGACTGAAAA TC

Fragments

Copies



Genome assembly
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NNNNNN NNNNNN

Sequence reads

Contigs

Contigs with mapped read pairs

Scaffolds

Chromosome



Genome assembly: coverage
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Coverage it is a short for average coverage: the average number of reads covering a position in the genome

GGTCTCTA
GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

GGTCTCTAAG

AGGACTGAAA
GCGCTAGACTAGG

GGACTGAAAATC

AAGCGCTAGACTA

AGGACTGAAAA

AAGCGCTAG
GCGCTAGAC

32 nucleotides

95 nucleotides

Average coverage = 95 / 32 = 3x



Genome assembly: coverage
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Coverage can also refer to the number of reads covering a particular position in the genome

GGTCTCTA
GGTCTCTAAGCGCTAGACTAGGACTGAAAATC

GGTCTCTAAG

AGGACTGAAA
GCGCTAGACTAGG

GGACTGAAAATC

AAGCGCTAGACTA

AGGACTGAAAA

AAGCGCTAG
GCGCTAGAC

Coverage at this position = 2

Coverage at this position = 5

Coverage at this position = 4



Genome assembly: overlapping reads
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Let’s assume that two reads truly originate from the same genomic region. 
Why might there be a difference?

GCGCTAGACTAGG

AAGCGCTAGACTA
AAGCGCAAG

GCGCAAGAC



Genome assembly: overlapping reads
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Let’s assume that two reads truly originate from the same genomic region. 
Why might there be a difference?

GCGCTAGACTAGG

AAGCGCTAGACTA
AAGCGCAAG

GCGCAAGAC

1. Sequencing error 

2. Difference between inherited copies of a chromosome

AAGCGCTAGACTA
AAGCGCAAGACTA

Maternal chromosome
Paternal chromosome



• Overlap-Layout-Consensus (OLC) - string graph assemblers 

• construct overlap graph directly from reads, eliminating redundant reads;  

• trace path in graph for assembly 

• examples: Arachne, Canu, Celara Assembler, HiCanu, SGA (String Graph Assembler) 

• de Bruijn graph assemblers 

• construct k-mer graph from reads; original reads are discarded 

• trace path in graph for assembly 

• examples: ABySS, Euler, EULER-SR, SOAPdenovo, Velvet

Two approaches to genome assembly



Overlap

Layout

Consensus

Reads

Error correction

de Bruijn graph

Refine

Scaffolding

OLC DBG



Genome assembly - OLC approach

Overlap

Layout

Consensus

Reads

Build overlap graph

Bundle stretches of the 
overlap graph into contigs

Pick most likely nucleotide 
sequence for each contig



AGACTAGGACTG

Building overlap graph
Finding all overlaps is similar to building a directed graph where 
directed edges connect overlapping nodes (reads) 

AGGACTGAAAATC

CGCTAGACT

TCTCTAAGCGCTAGA

AGACTAGGACTG
AGGACTGAAAATC

Suffix of one read is similar 
to a prefix of another read



An overlap graph, where an overlap is a suffix/prefix match of at 
least 5 characters

AGACTAGGACTG
CGCTAGACT

AGGACTGAAAATC
AGACTAGGACTG

CGCTAGACT AGACTAGGACTG AGGACTGAAAATC
5 7

A vertex is a read, a directed edge is an overlap between suffix of source and prefix of sink.

Vertices (reads): {a: CGCTAGACT, b: AGACTAGGACTG, c: AGGACTGAAAATC} 

Edges (overlaps): {(a,b),(b,c)}





• Efficient computation of all read overlaps is a key to success 

• Finding overlaps is computationally demanding and OLC-based assembly 
tends to be slow. 

• For example assembly of a human genome after Illumina (short read) 
sequencing with 1.2 billion reads took 1427 CPU-hours or 140 hours of real 
time using  SGA assembler

Genome assembly - OLC approach



Genome assembly - de Bruijn graph

AGACTAGGACTG

k-mer is a substring of length k mer - from Greek meaning “part”

All 4-mers of S AGAC
GACT

ACTA
CTAG

TAGG
AGGA

GGAC
GACT

ACTG

AGA
GAC

ACT
CTA

TAG
AGA

GGA
GAC

ACT
CTG

All 3-mers of S

S:



Continuous linear stretches within the graph 

Assembler keeps information about reads coverage for each k-mer/node. Flicek & Birney (2009) Nat Meth, 6: S6-S12.



Graph is simplified to combine nodes that are associated with the continuous linear stretches into single, larger 
nodes of various k-mer sizes. 
Error correction removes the tips and bubbles that result from sequencing errors. 
Sequencing errors are low frequency tips in the graph. 

Flicek & Birney (2009) Nat Meth, 6: S6-S12.



• de Bruijn graph approach limitations 

• reads are immediately split into shorter k-mers and 
consequently cannot resolve repeats very well 

• they don’t deal with sequencing errors very well 

• reads coherence is lost and some paths through de Bruijn graph 
are inconsistent with respect to input reads.

Genome assembly - de Bruijn



Comparison of OLC and de Bruijn graph assembly
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SGA 
(OLC )

Velvet 
(de Bruijn)

Contig N50 size 16.8 kb 13.6 kb

Scaffold N50 size 26.3 kb 31.3 kb

Sum aligned contig size 96.8 Mb 95.2 Mb

Reference bases covered 96.2 Mb 94.8 Mb

Mismatch rate at assembled bases 1 per 21.5 kb 1 per 8.8 kb

Total CPU time 41 hours 2  hours

Max memory usage 4.5 GB 23 GB

Assembly statistics for Caenorhabditis elegans dataset (33.8M 100-nt read pairs)

Genome Res. 2012. 22: 549-556



Assembly evaluation - N50
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If one orders the set of contigs produced by the assembler by size, then N50 is the size 
of the contig such that 50% of the total bases are in contigs of equal or greater size. 

15+12+9+7+6+5+2 = 56 

56/2 = 28    ->  N50 is 9kb (15+12 = 27 is less than 50%)



CHALLENGE: HOW FROM THIS…

TGCATCGATCGTAGCTAGCTAGCGCATGCTAGCTAGCTAGCTAGCTACGATGCATCG 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT 
AGCTAGTGTAGCTAGCTAGCATGCTGCTAGCATGCAGCATGCATCGGGCGCGATGCT 
GCTAGCGCTGCTAGCTAGCTAGCTAGCTAGGCGCTAATTATTTATTTTGGGGGGTTA 
AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCACATGATGATCGTTAGTAGCTACT 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
AAAGACCCCATCTCTCTCTCTTTTCCCTTCTCTCGCTAGCGGGCGGTACGATTTACC 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT



…infer this



What are we looking 
for?

• protein-coding genes 

• RNA-coding genes 

• gene promoters 

• regulatory elements 

• repetitive elements including 
transposons



Annotation workflow
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Annotation workflow
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Transcriptome assembly
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RNA-seq

Reads cleanupSplice-aware alignment 
to a reference genome 

TopHat, STAR

Transcripts reconstr. 
Cufflinks, Scripture

De novo transcriptome 
assembly 

SOAPdenovo-trans, 
Trans ABYSS, Trinity

Post-assembly analyses: assembly QC 
assessment, abundance estimation, diffe- 

rential expression analysis, gene structure 
identification, functional annotation

Reference-based De novo



Reference-based 
transcriptome 
assembly
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Tuxedo Suite

Align RNA-seq reads to a reference 
genome and find splice junctions 

using TopHat

Assemble transcriptis based 
on aligned reads with Cufflinks

Comprehensive set of 
transcripts including isoforms



Transcript assembly
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Reference contig

Potential 
intron

Potential 
intron

Potential 
exon

Potential 
exon

Potential 
exon



Transcript assembly
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Reference contig

Potential 
intron

Potential 
intron

Potential 
exon

Potential 
exon

Potential 
exon

Splicing signals

U12

U2



Transcript assembly
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Potential 
intron

Potential exon Potential exon

GT AG
Reference contig

Assembled transcript



Do we need de novo  
transcript assembly if we 
have a genome sequenced?
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Yes, we do



Miss- assembly 
wrong contig fragments order

missing pieces of DNA



Miss- assembly 
“inversion”



Gene on different contigs 

mRNA fragment missing from the assembly 



Annotation workflow
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Type of repeats

• Simple repeats  

• e.g. (AT)n, (TCT)n, 
microsatellites, etc. 

• Interspersed repeats  

• Gene families, e.g. rRNA-coding 

• Transposable elements 

• Low complexity regions



TE-content in different genomes
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0

22.5

45

67.5

90

E. coli Arabidopsis Maize C. elegans Fugu Zebrafish Chicken Mouse Human



TRANSPOSASE

Class I

Class II - subclass 1

ORF polyA

HELICASE, (rpal)TC CTRR

int ORFs polB

Class II - subclass 2

TSDTSD

LTRLTR gag pol env TSDTSD

TDS TDS

TIR

TIR

TIR

TIR

TIR

TIR

Retroviruses

ORF1 ORF2 polyA TSDTSD
LINEs

LTRLTR gag polTSD
LTR elements

TSD

Retrogenes

TSD TSDCGCTCTn Alu-like VNTR SINE-R polyA

SVAs

YRgag TIRTIRTSD
DIRS

TSD

A B polyATSD
SINEs

TSD

LTRLTR RT EN
TSD TSD

PLE - Penelope-like elements

“classical” autonomous DNA transposons

“classical” nonautonomous DNA transposons

Helitrons

Mavericks

TRANSPOSASE

Class I

Class II - subclass 1

ORF polyA

HELICASE, (rpal)TC CTRR

int ORFs polB

Class II - subclass 2

TSDTSD

LTRLTR gag pol env TSDTSD

TDS TDS

TIR

TIR

TIR

TIR

TIR

TIR

Retroviruses

ORF1 ORF2 polyA TSDTSD
LINEs

LTRLTR gag polTSD
LTR elements

TSD

Retrogenes

TSD TSDCGCTCTn Alu-like VNTR SINE-R polyA

SVAs

YRgag TIRTIRTSD
DIRS

TSD

A B polyATSD
SINEs

TSD

LTRLTR RT EN
TSD TSD

PLE - Penelope-like elements

“classical” autonomous DNA transposons

“classical” nonautonomous DNA transposons

Helitrons

Mavericks

Class I: Retrotransposons 

“copy-and-paste” transposition 

Class II: DNA transposons 

“cut-and-paste” transposition 

Both classes are represented by autonomous 
and non-autonomous elements



Similarity-based 
• RepeatMasker 

• Censor 

De novo 
• self-comparison approach 

(RECON, PILER, BLASTER) 

• k-mer approach: sequences are 
scanned for overrepresentation 
of strings of certain length 
(REPuter, Vmatch, RepeatScout) 

• RepeatModeler2 - a pipeline that 
combines different approaches 
and software, such as 
RepeatScout and RECON

Identification of repeats



Classification of TEs
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Approach Target TEs Software (reference collection)

Similarity-based
General Censor (RepBase, custom library)

General Repeat Masker (RepBase, Dfam, custom library)

Signature-based

LTR 
transposons

LTR_STRUC, LTR_par, find_LTR, LTR_FINDER, 
LTRharvest

MITEs FINDMITE, MUST

Helitrons HelitronFinder, HelSearch

Machine learning General
TEclass (binary classification of TE types) 
TERL (neural networks)



Annotation workflow
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• RNA coding genes (ncRNA genes) 

• tRNA, snRNA, lncRNA, rRNA, etc. 

• Protein coding genes 

• Promoters 

• Long-range regulatory elements 

• enhancers, repressors/silencers. 
insulators

Structural annotation
To determine position and structure of different genomic elements:



Molecular techniques  
• quite laborious  
• time consuming 
• relatively expensive 
• low rate false positive 
• relatively high rate of false 

negatives 
• comprehensive approach in large-

scale projects, e.g. ENCODE 

Computational methods 
• fast 
• relatively low cost 
• high rate of false positives 
• poor performance on less typical 

genes 
• usually only coding sequence 

(CDS) can be determined

Different approaches



• tRNA, snRNA, rRNA, lncRNA, etc. 

• usually secondary structure more 
conserved than nucleotide sequence 

• covariance and HMM models work 
very well 

• specialized software (tRNA-scan) or 
more generic, e.g infernal

Structural annotation
RNA coding genes (ncRNA genes)
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Computational prediction 
of protein-coding genes



General model of protein-coding gene
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Intergenic  
region

Start
Coding 

sequence
Stop



General model of protein-coding gene
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Intergenic  
region

Start
Coding 

sequence
Stop

Intergenic  
region

ATG series of codons Stop 
5’ 

UTR
3’ 

UTR
Promoter

Intergenic  
region

Prokaryotic gene structure



General model of protein-coding gene
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Intergenic  
region

Start
Coding 

sequence
Stop

Intergenic  
region

Exon ExonPromoter
Intergenic  

region

Eukaryotic gene structure

Intron Exon Intron



Eukaryotic gene structure

54



Gene finding methods
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model based
based on 

similarity to known 
genes

multi-genome 
approach

sequence 
composition signals transcripts proteins conservation

coding/non-coding 
sequence 

discrimination
homology based



Gene finding methods

56

We take advantage of what we already learned 
about gene structures and features of coding 
sequences. Based on this knowledge we can 
build theoretical model, develop an algorithm 
to search for important features, train it on 
known data and use to search for coding 
sequences in anonymous genomic fragments. 

However, we should remember that all models 
are wrong, but some are useful. 

George E. P. Box



How to build the model
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Basically, we can only discriminate between 
coding and non-coding sequences. 

We can check if sequence in particular ORF has 
some other features, which could tell us if this is a 
putative coding sequence or the ORF is false 
positive. We can look at the sequence content and 
compare it with known coding sequence and non-
coding sequence and check to which of these two 
the ORF sequence is more similar to. 

We can also model some regulatory signals, 
such as promoters, transcription binding sites, 
splicing signals, etc.



Hidden Markov Models
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• HHM is a statistical model for an ordered sequence of symbols, acting as a 
stochastic state machine that generates a symbol each time a transition is 
made from one state to the next. Transitions between states are specified 
by transition probabilities. A Markov process is a process that moves from 
state to state depending on the previous n states.  

• HHM has been previously used very successfully for speech recognition. 

• In biology it is used to produce multiple sequence alignments, in generating 
sequence profiles, to analyze sequence composition and patterns, to 
produce a protein structure prediction, and to locate genes. 

• In gene identification HMM is a model of periodic patterns in a sequence, 
representing, for example, patterns found in the coding parts of a gene. 
HMM provides a measure of how close the data pattern in the sequence 
resemble the data used to train the model. 



Markow chains
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A Markov Chain is a non-deterministic system in which it is assumed that the 
probability of moving from one state to another doesn’t vary with time. This 
means the current state and transition does not depend on what happened 
in the past. The Markov Chain is defined by probabilities for each occurring 
transition.

A B C



Markow chains
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In a sequence analysis we look 
at probabilities of transitions 
from one nucleotide to 
another. We can check, for 
example, if certain patterns 
of transition are more 
frequent in coding sequences 
than in non coding sequences. T

G C

A



Order of Markov chains
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GCGCTAGCGCCGATCATCTACTCG	 Zero	order	-	the	current	
nucleo2de	is	totally	independent	
of	the	previous	nucleo2de.	
For	example,	a	probability	of	“G”	
in	a	given	sequence.



Order of Markov chains
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GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	 First	order	-	the	current	
nucleo2de	only	depends	on	the	
previous	nucleo2de.		
For	example,	a	probability	of	
having	“G”	in	the	sequence	if	the	
previous	nucleo2de	is	“A”.	



Order of Markov chains
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GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG Second	order	-	the	current	
nucleo2de	depends	on	the	
previous	two	nucleo2des.		
For	example,	a	probability	of	
having	“G”	in	the	sequence	if	the	
previous	nucleo2des	are	“TA”.



Order of Markov chains
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GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG FiFh	order	-	the	current	
nucleo2de	depends	on	the	
previous	five	nucleo2des.	
For	example,	a	probability	of	
having	“G”	in	the	sequence	if	the	
previous	nucleo2des	are	“CGCTA”.



How far we can go?
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•  Order of our model will have 
influence on specificity and 
sensitivity of our program.  

• Too short sequences may not be 
specific enough and program may 
return a lot of false positives.  

• Long chains may be too specific and 
our program will not be sensitive 
enough returning false negatives.



Order of Markov chains
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GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG First	order	-	the	current	
nucleo2de	only	depends	on	the	
previous	nucleo2de	(a	probability	
of	having	“G”	in	the	sequence	if	
the	previous	nucleo2de	is	“A”)	

In	our	example	the	sequence	is	24	nt	long.	
For	“G”	we	would	have	the	following	
probability	matrix:

p(G,A)	=	1/23	=	0.043	
p(G,T)	=	0/23	=	0	
p(G,C)	=	4/23	=	0.174	
p(G,G)	=	0/23	=	0



Probability matrix
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Number of probabilities in a DNA matrix of a given order can be 
calculated according to the following formula: 

                                      4k+1 

where 4 represents number of letters in the DNA alphabet and k stands 
for the order number. 

Hence, first order Markov Model matrix consists of 42 = 16 probabilities 

p(A/A), p(A/T), p(A/C), p(A/G),  

p(T/A), p(T/T), p(T/C), p(T/G),  

p(C/A), p(C/T), p(C/C), p(C/G),  

p(G/A), p(G/T), p(G/C), p(G/G)



Probability matrix
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Frequencies of transitions may depend on in which codon position (1st, 
2nd, or 3rd) is a given nucleotide (state). This increases number of 
probabilities to be calculated. For first order Markov chains it would be:

3 (41+1) = 3 x 42 = 48



Calculating coding potential of a sequence
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To estimate if the sequence (S) is coding we have to calculate probability that 
sequence is coding (Pc) and probability the sequence is non-coding (Pnc). Next we 
calculate logarithm from the ratio of these two probability values.

If the calculated value is > 0 the likelihood that the sequence is coding is higher than 
the sequence is not coding, if value is < 0 there is higher likelihood that sequence is 
not coding.

LP(S) = log Pc (S) 

Pnc (S)



Coding versus non-coding sequence
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A/A  C/A  G/A  T/A              coding 
0.36  0.21  0.19  0.24 

A/A  C/A  G/A  T/A       non-coding* 
0.25  0.25  0.25  0.25 

* it is common to assume that probability of each transition 
is equal but it would be more realistic to use nucleotide 
frequencies of the analyzed sequence



Coding versus non-coding sequence
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* in the case of the first position in the analyzed sequence we put the frequency of 
a particular letter in the analyzed genome



Coding versus non-coding sequence
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Eukaryotic model of protein-coding gene
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Exon Exon
Start 
(AUG)

StopIntron Exon Intron

coding coding coding

non-coding non-coding

In this case we do not want check if a given sequence fragment is coding or not 
but we rather want to identify coding fragments in a long sequence. In most 
cases, this is done by calculating statistics in overlapping windows. 



Eukaryotic model of protein-coding gene
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This example shows a profile for a 
sequence analyzed using a 120-bp 

window and a 10-bp step.

AGTACGATATTAGCGGCAATCGTATGACTACGTCTTGCTACGTCTTCTCTCGTCTGCTCTAG



Rule-based methods
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Minimal 
length ORF

Splicing 
sites

Coding 
potential

Putative 
exons



Annotation workflow
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Gene Model Mapper (GeMoMa)

Keilwagen et al. BMC bioinformatics, 19(1):189, 2018



GeMoMa annotation of Pogonomyrmex californicus
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Reference species

Number of 
proteins in the 

reference 
genome

Number of 
proteins 

predicted in the 
target genome

Number of 
proteins in the 

final annotation

Pogonomyrmex 
barbatus

19,128 14,851 12,865

Solenopsis invicta 21,118 14,160 3,697

Camponotus 
floridanus 18,824 13,769 2,549

Apis melifera 22,451 10,752 1,095

Number of merged GeMoMa predictions 20,170



Annotation workflow
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Functional annotation
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The functional annotation of the detected genes includes protein 
identifications based on similarities to well annotated proteins, their 
molecular function (GO-annotation) and pathways they are involved in. 

This is usually done based on a series of similarity searches against well 
annotated databases. 

• Uniprot 

• NCBI Refsec collection 

• Pfam or other protein domains database 

• KEGG



Functional annotation of  27,264 of    
Pogonomyrmex californicus proteins
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Run Database DB size
Detected 
functions

Unknown 
proteins

1 Uniport 557,992 12,615 14,649

2
Refseq 

(Pogonomyrmex)
12,578 1,849 12,800

3 NCBI nr 181,118,669 2,148 10,653

Final 16,612 10,653



Annotation workflow
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Annotation  
evaluation



Genome assembly and annotation 
evaluation 

83

Benchmarking Universal Single-Copy Orthologs (BUSCO) is a tool for 
measure the completeness of genome assembly data, annotated gene 
sets or transcriptomes in terms of expected gene content while 
comparing the data to core sets of orthologous groups with genes 
present as single-copy orthologs.





BIOINFORMATICS CREED

Remember about biology 

Do not trust the data 

Use comparative approach 

Use statistics 

Know the limits 

Remember about biology!!!




