BIOINFORMATICS 1

or why all biologists need computers

Wojciech Makałowski Institute of Bioinformatics Faculty of Medicine

TOPICS TO BE COVERED IN THIS COURSE

- Introduction to Sequence Analysis. [WM]
- Genome Annotation. [WM]
- Phylogenetic inference. [WM]
- Differential gene expression. [JG]
- Introduction to system biology. [EK]
- Introduction to artificial inteligence for biologists [XJ]

• Introduction to bioinformatics from the evolutionary perspective. [WM]

HANDS ON COMPUTER LAB

This year via zoom only

•First session

• from BLAST to phylogenetic inference (week of November 27, 2023)

•Second session

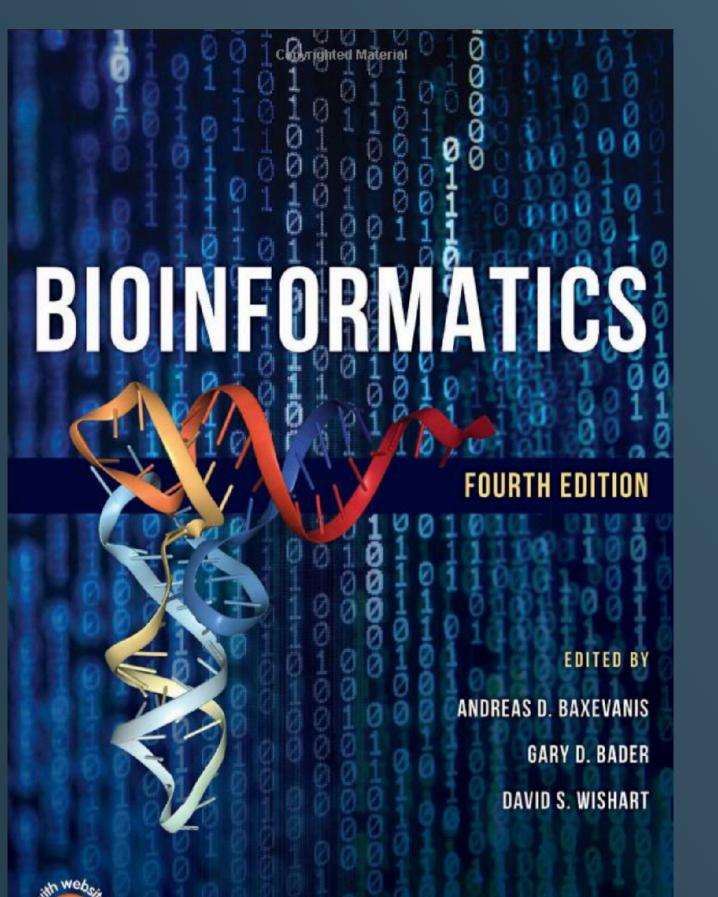
- transcriptome analyses (week of December 4, 2023)
- •Registration to practicals will be open in early November

CONTACT

- Prof. Dr. Wojciech Makałowski <u>wojmak@uni-muenster.de</u>
- Prof. Dr. Jürgen R. Gadau <u>gadauj@uni-muenster.de</u>
- Prof. Dr. Eberhard Korsching <u>eberhard.Korsching@uni-muenster.de</u>
- Prof. Dr. Xiaoyi Jiang <u>xjiang@uni-muenster.de</u>
- Mr. Felix Menske <u>f_manso2@uni-muenster.de</u> (lab coordinator)
- <u>http://bioinformatics.uni-muenster.de/teaching/Current/bioinf1/index.hbi</u>
- office hours by appointment


•60% of the final grade comes from the exam

· date and form to be determined


•40% of the final grade based on practicals

GRADING

RECOMMENDED BOOKS

WILEY

Copyrighted Material

OXFORD

JAMIL MOMAND ALISON MCCURDY

CONCEPTS IN BIOINFORMATICS AND GENOMICS

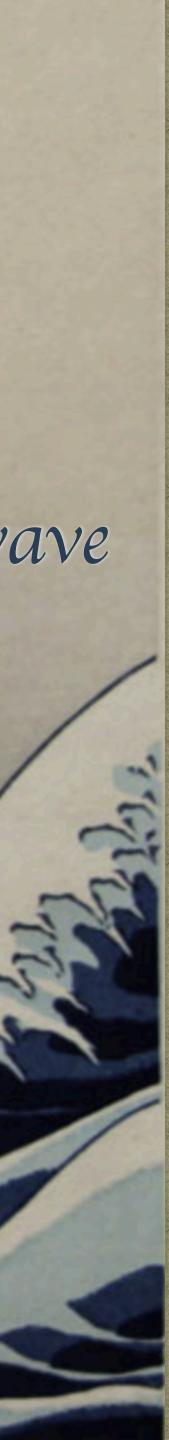
INTERNATIONAL EDITION

This version of the text has been adapted on I for sole in the USA or Case


OXFORD

AN INTRODUCTION TO MOLECULAR EVOLUTION AND PHYLOGENETICS

SECOND EDITION


LINDELL BROMHAM

It's sínk or swím as tídal wave of data ís approaching Nature edítorial, 1999

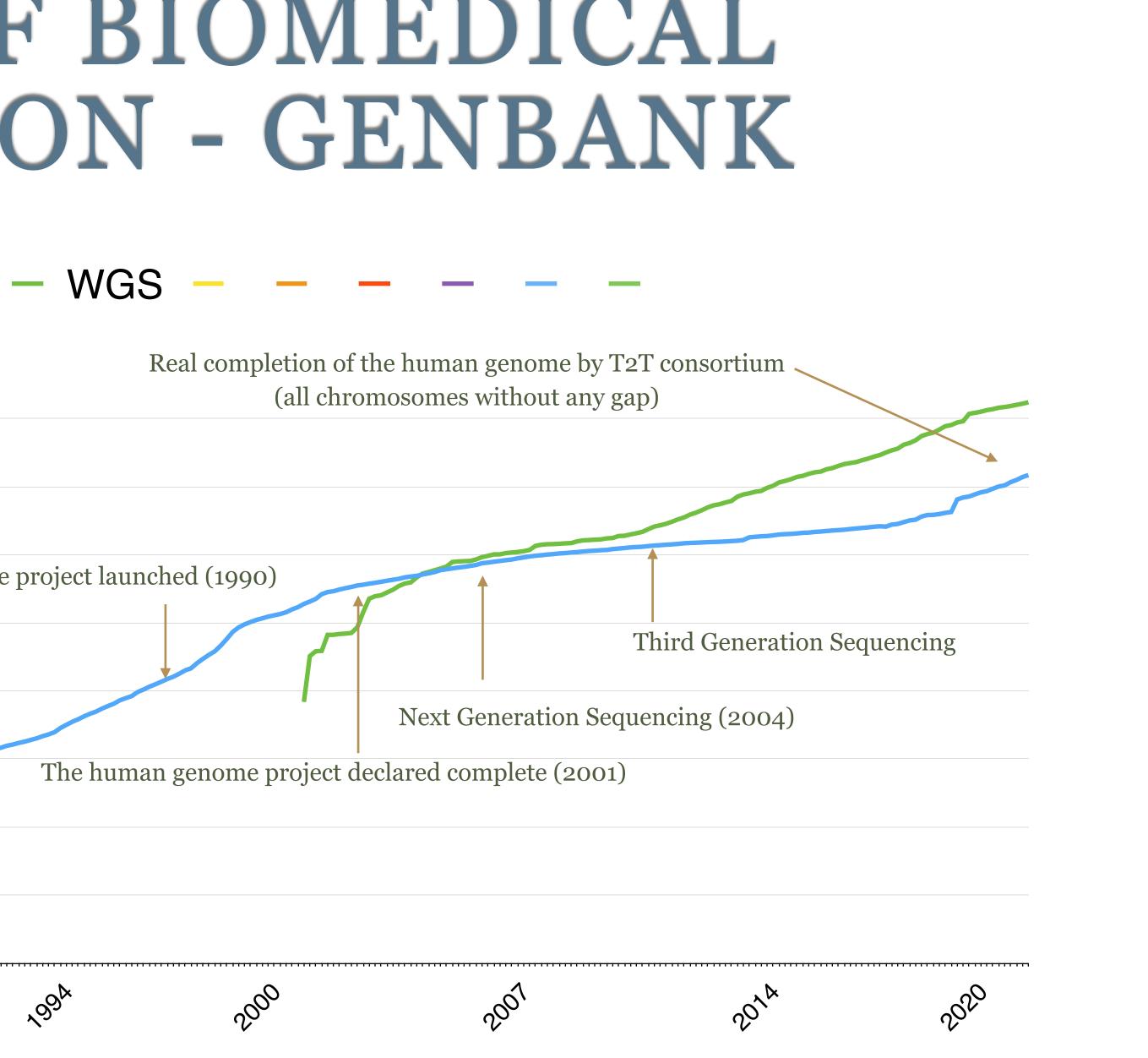
2-7-2-

Unfortunately, it is not a tidal wave, it is a tsunami!

in a start me

100 M 100 M 100 M

a service of a service of

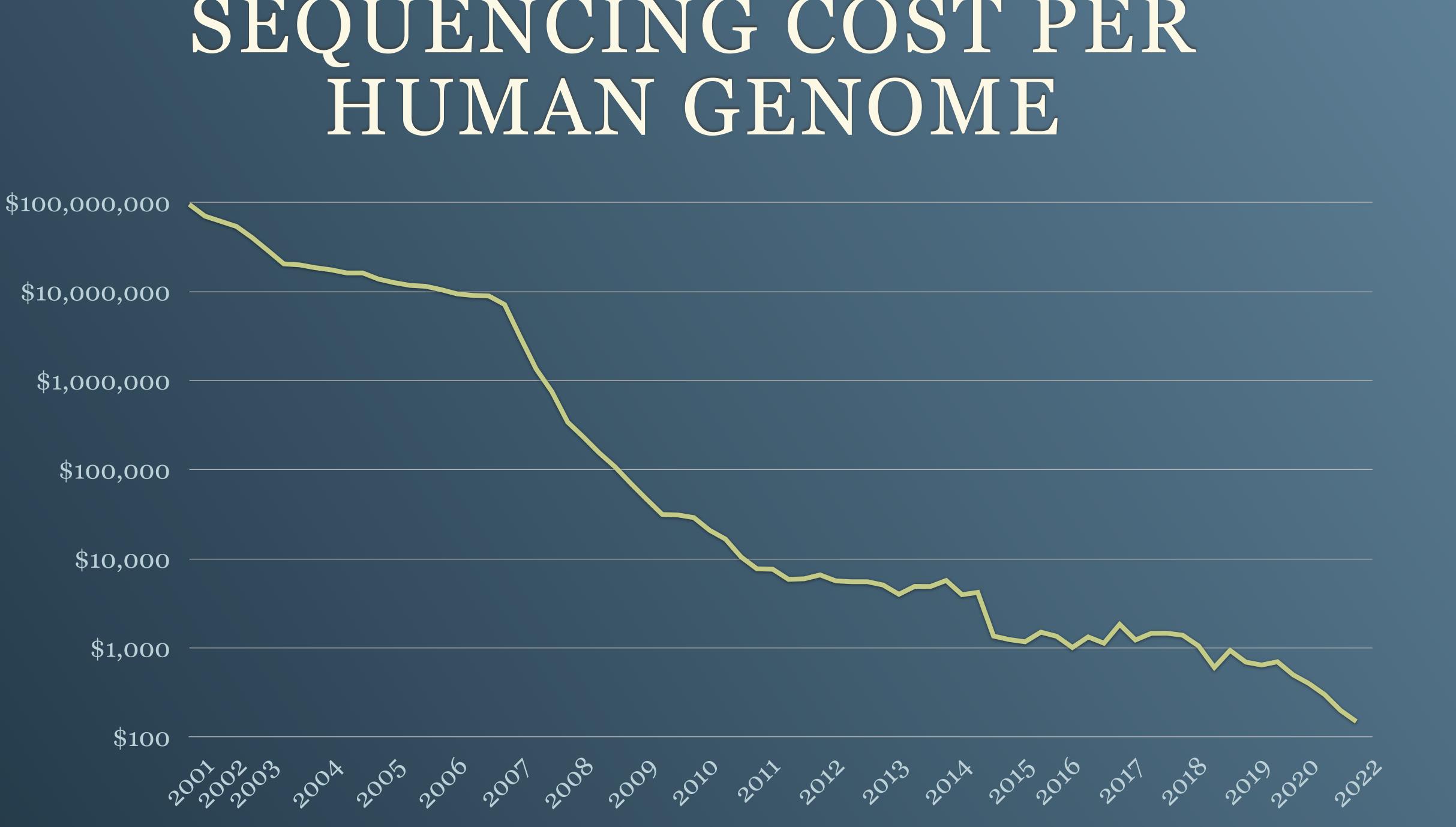

I COMPET

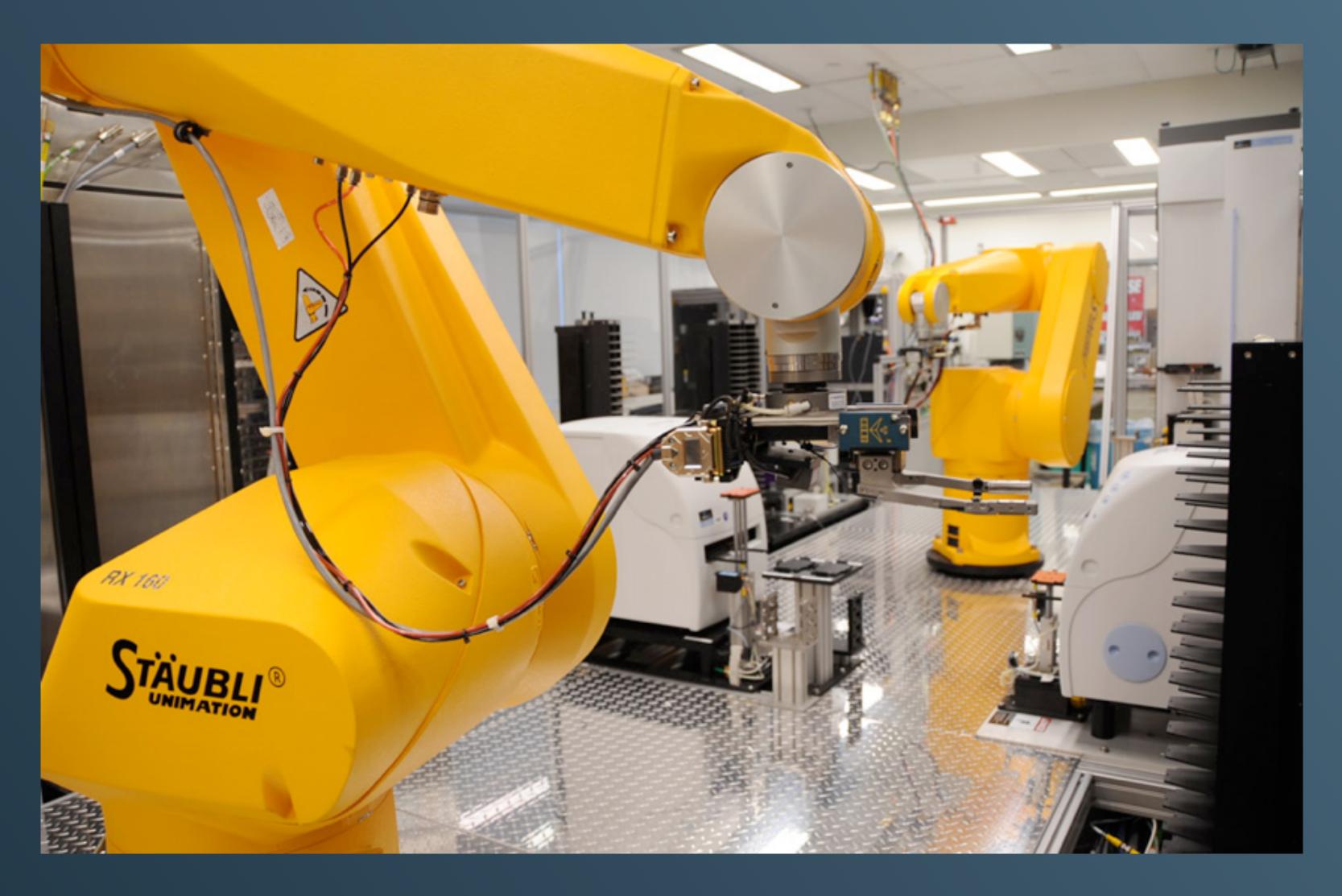
AT I

GROWTH OF BIOMEDICAL INFORMATION - GENBANK

	— GenBank
 GenBank Rel. 0 (May 1980) 	
 1000 seq 	1E+13
• 100,000 nt	1E+12
	1E+11 The human genome
• GenBank Rel. 251	1E+10
(August 2023)246 mln seq;	1E+09
2.1 trillion nt	1E+08 1E+07
 22.3 trillion nt in the "whole genome 	1E+06 GenBank release o
shotgun" section	1E+05

– WGS




SEQUENCING COST PER MEGABASE

SEQUENCING COST PER HUMAN GENONE

TECHNOLOGY MEETS BIOLOGY

CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG CGCGCGCATTATGCCGCGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCCACATGATGATCGTTAGTAGCTACT CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG

GETTING SEQUENCES

READING \neq UNDERSTANDING

Carmina qui quondam studio florente peregi, flebilis heu maestos cogor inire modos.

Ecce mihi lacerae dictant scribenda

Camenae et ueris elegi fletibus ora rigant.

Boethius, Consolatio Philosophiae

READING \neq UNDERSTANDING

We shall best understand the probable course of natural selection by taking the case of a country undergoing some physical change. If the country were open were open on its borders, new forms would certainly immigrate, and this also would bla, bla bla become extinct inhabitants.

Charles Darwin - The Origin of Species

CHALLENGE: HOW FROM THIS...

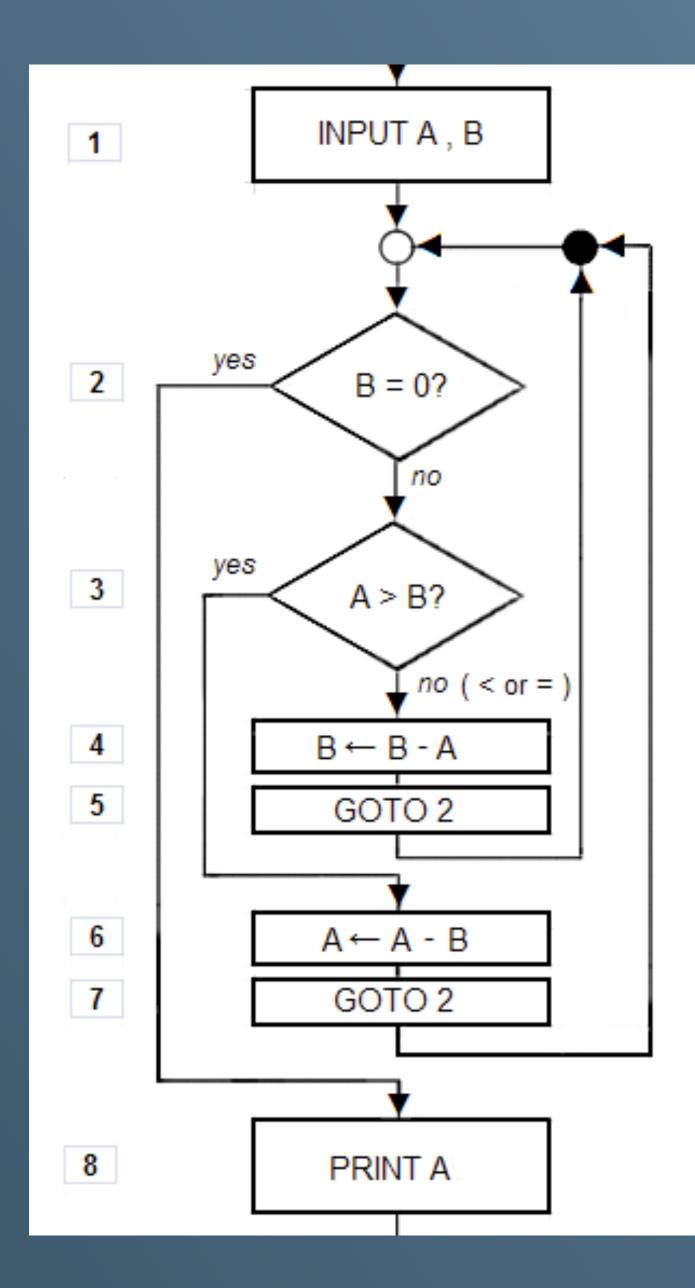
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG CGCGCGCATTATGCCGCGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCCACATGATGATCGTTAGTAGCTACT CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG

infer this

HOW TO SOLVE A PROBLEM - A HUMAN OR A COMPUTER?

• very smart

- slow
- error prone


- not so smart (stupid)
- extremely fast
- very accurate
- doesn't understand human languages; needs instruction provided in a special way

ALGORITHM

A step-by-step problem-solving procedure, especially an established, recursive computational procedure for solving a problem in a finite number of steps.

EXAMPLE TASK: PUT SHOES ON!

A human just understands an order and often executes it automatically even without thinking

A computer needs detailed instruction (an algorithm)

PUT SHOES ON! INSTRUCTION FOR A COMPUTER

- 1. Find two the same shoes
- 2. Check if you have left and right shoe
- 3. Check if they are of the same size
- 4. Check if this is the right size
- 5. Put the left shoe on
- 6. Put the right shoe on
- 7. Tie the laces

Paulien Hogeweg coined the term *bioinformatica* to define "the study of informatic processes in biotic systems."

Biologen Club.

... but its origin can be tracked back many decades earlier.

THE ORIGIN OF THE FIELD

Hesper B, Hogeweg P (1970) Bioinformatica: een werkconcept. Kameleon 1(6): 28–29. (In Dutch.) Leiden: Leidse

BIOINFORMATICS EMERGED AS AN INTERSECTION BETWEEN DIFFERENT DISCIPLINES

James Watson

Alan Turing

Information technology

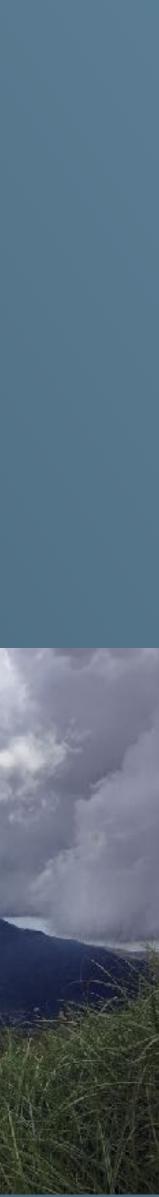
Molecular

biology

Thomas Bayes

Molecular evolution

Motoo Kimura


BIOINFORMATICS -DEFINITION

- archive, analyze, or visualize such data.

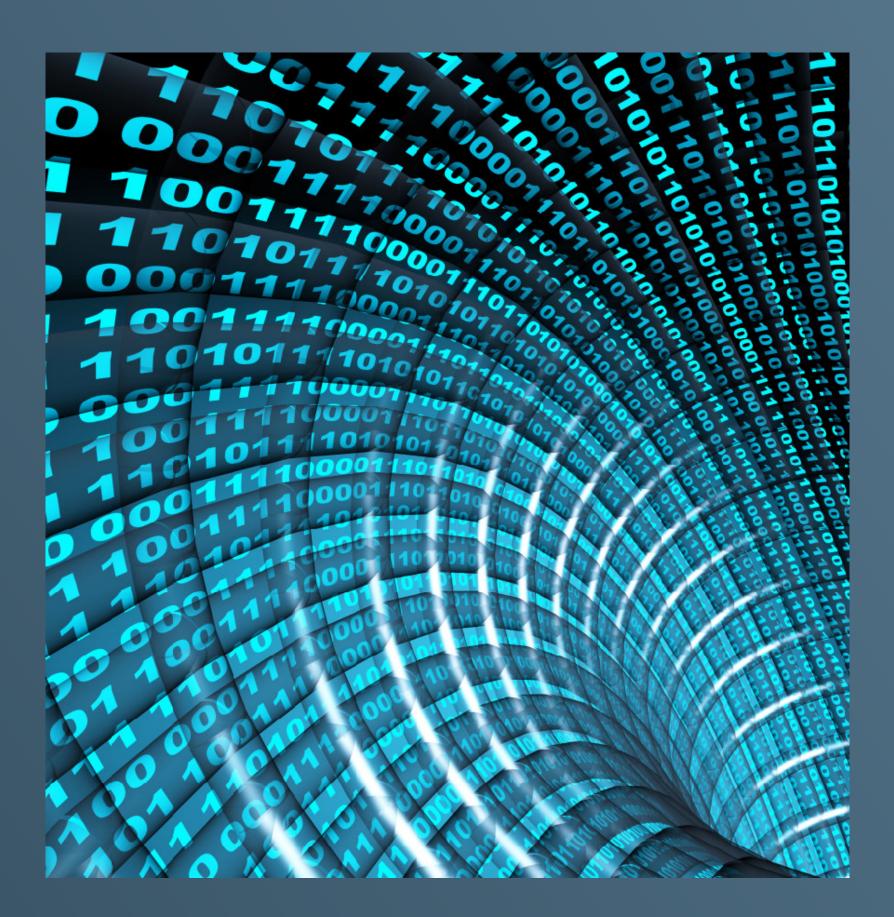
•Research, development, or application of computational tools and approaches for expanding the use of biological data, including those to acquire, store, organize,

•Its goal is to enable biological discovery based on existing information or in other words transform biological data into information and eventually into knowledge.

ROLE OF BIOINFORMATICS IN MODERN LIFE SCIENCES

molecular biology molecular evolution genomics system biology protein engineering drug design

- human genetics
- personalized medicine
- biogeography
- you name it...



TWO MAJOR CHALLENGES

How to store the data?

How to analyze the data?


HOW TO STORE DATA

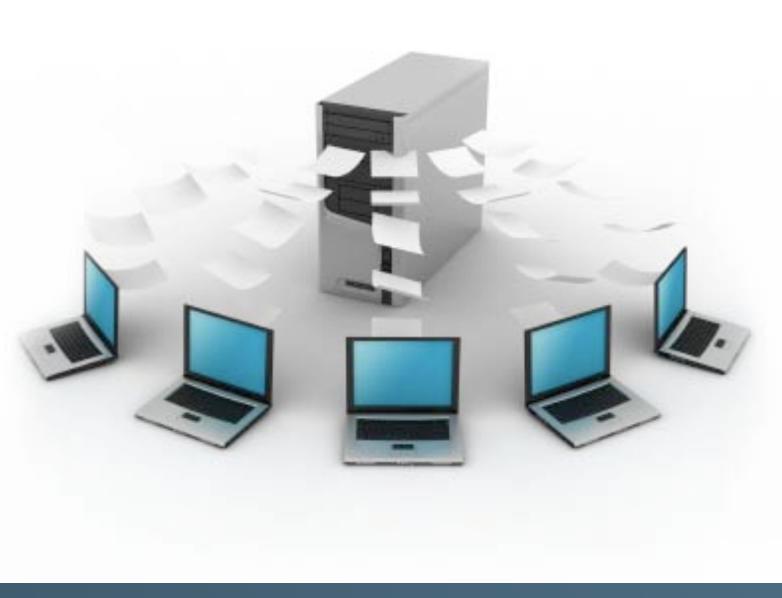
Ad hoc storage

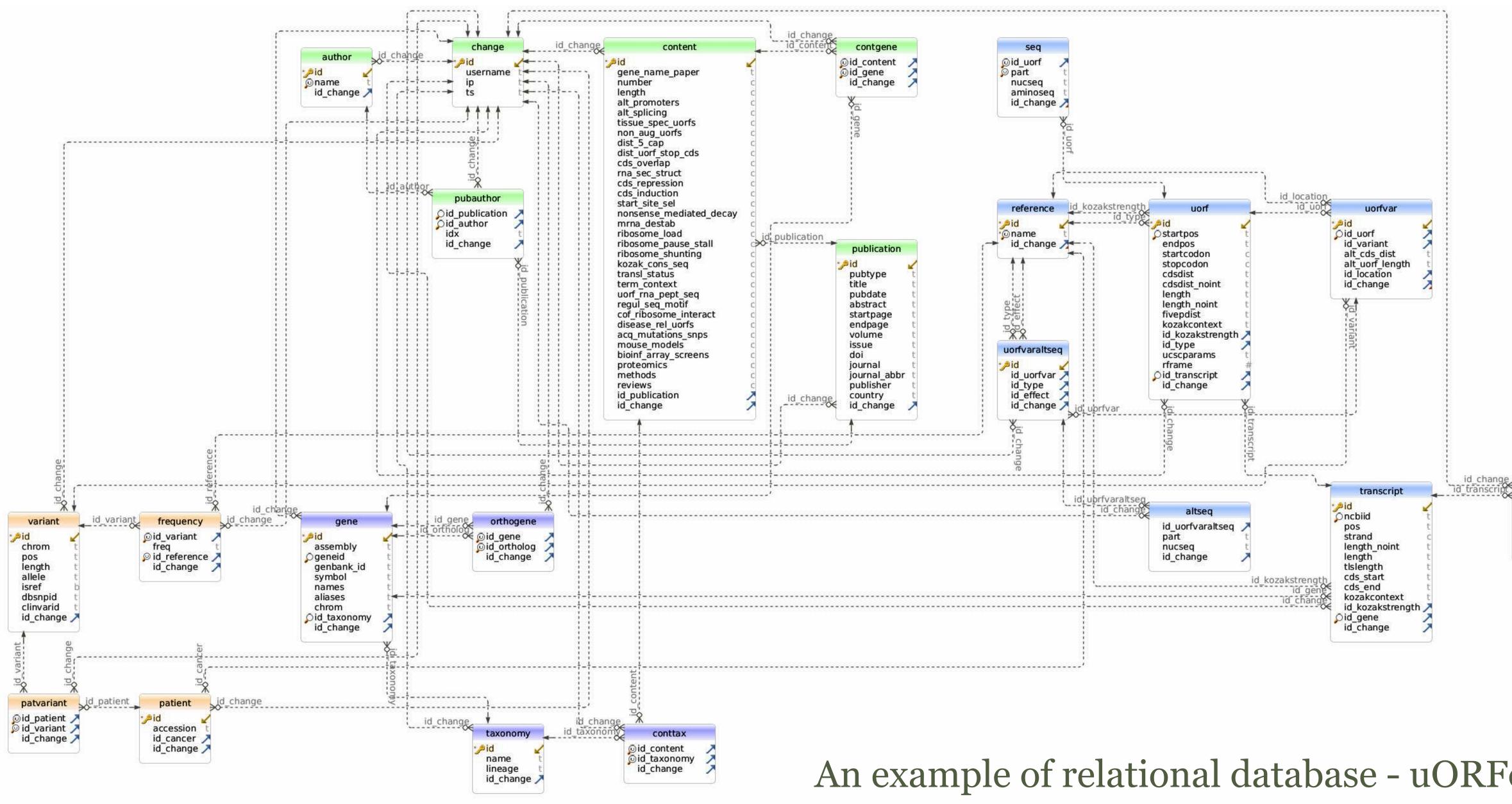
Organized storage

BIOLOGICAL DATABASES

BIOLOGICAL DATABASES

- databases should be characterized by
 - easy data access ullet
 - ightarrow


organized sets of large amount of data, usually coupled with a software that enables data search, information extraction, and data update


the possibility to extract only the information that is desirable

•Relational Database Management Systems (RDBMS)

- Introduced in the 1970s
- Off-the-shelf software (commercial and open source)
 - Oracle, DB2, MySQL, PostgradeSQL
- High level declarative language SQL
- Concurrency
- Transaction control
- Consistency

MODERN RESOURCES

An example of relational database - uORFdb https://bioinformatics.uni-muenster.de/tools/uorfdb/index.pl

PRIMARY VS. SECONDARY DATABASE

Primary db

- Strictly repository database
 Original submitter "controls" a record, including updating information
- •Database administrator can validate and check data for consistency
- •Example: GenBank

Secondary db

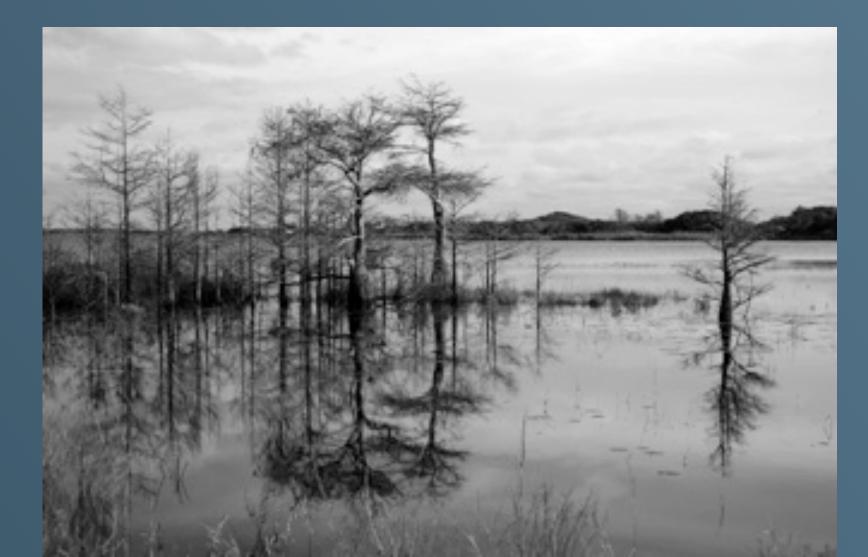
- Original data, for example sequences, are post-processed adding more biological information
 Usually more specialized than repository databases
 Curators of the database take control of the content
- •Example: uORFdb

CRITICAL ISSUES FOR BIOLOGICAL DATABASES

- Annotation
 Correctness
 Consistency
 Quality
 Archival Quality
- •Updates
 - · Raw data
 - · Annotation

CRITICAL ISSUES - ANNOTATION

- •Correctness many genes are annotated primarily based on sequence comparisons. Annotation is copied from a similar sequence to a novel sequence. This may cause some problems
 - Comparison may have been done when the data was less complete
 - · If a sequence is incorrectly annotated, this error propagates through the database



CRITICAL ISSUES ANNOTATION QUALITY

•Who supplies the annotation? An expert, or a non-expert at the database

•Many databases have defined groups of "experts" to help annotated genes or gene families, but there is no peer review of information in databases

•What is the vocabulary?

CRITICAL ISSUES ARCHIVAL QUALITY

- ullet(secondary DB).
- Can the same entry be recovered later? \bullet
 - · Accession numbers are more stable than entry or locus names
 - Many databases do not note that there have been changes to the data! What you retrieve today may be different than yesterday

Databases have been torn between trying to be archival – to simply report information as experts publish it (*primary databeses*), or curated – to provide the best editorially reviewed data on a topic

CRITICAL ISSUES: UPDATES

- •How often are updates done? Major databases take direct submissions.
- •Generally, only the original submitter can change an entry, even if you can prove it is wrong. This is tied to the question of archival versus curated.
- •How is annotation updated as more knowledge is available? Who decides?

NCBI - HOME OF MANY IMPORTANT DATABASES

SNCBI Resources 🗹 How To 🕄	✓
SNCBI National Center for Biotechnology Information	bases 🖨
	COVID-19 is an e Get the latest public health info Get the latest research f Find NCBI SARS-CoV-2 literature, sequence
NCBI Home Resource List (A-Z)	Welcome to NCBI

The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.

About the NCBI | Mission | Organization | NCBI News & Blog

Submit

Deposit data or manuscripts into NCBI databases

computer

Genes & Expression

Domains & Structures

Chemicals & Bioassays

All Resources

Data & Software

DNA & RNA

Genetics & Medicine

Genomes & Maps

Homology

Sign in to NCBI

emerging, rapidly evolving situation.

- ormation from CDC: https://www.coronavirus.gov.
- from NIH: https://www.nih.gov/coronavirus.
- , and clinical content: https://www.ncbi.nlm.nih.gov/sars-cov-2/.

Download

Transfer NCBI data to your

Learn

Find help documents, attend a class or watch a tutorial

Popular Resources PubMed **Bookshelf** PubMed Central **BLAST** Nucleotide Genome SNP Gene Protein PubChem

NCBI - HOME OF MANY IMPORTANT DATABASES

SNCBI Resources 🖸	🖸 How To 🖂	
SNCBI National Center for Biotechnology Information	✓ All Databases Assembly Biocollections BioProject	
	BioProject BioSample BioSystems Books ClinVar	COVID-19 is an emo Get the latest public health inform Get the latest research from CBI SARS-CoV-2 literature, sequence, an
	Conserved Domains dbGaP	
NCBI Home Resource List (A-Z)	dbVar Gene	anter for Biotechnology Informat
All Resources	Genome	genomic information.
Chemicals & Bioassays	GEO DataSets GEO Profiles	BI Mission Organization NCBI Ne
Data & Software	GTR	
DNA & RNA	HomoloGene	ubmit Dov
Domains & Structures	Identical Protein Groups MedGen	or manuscripts Transfer NCB
Genes & Expression	MedGen	abases computer
Genetics & Medicine	NCBI Web Site	
Genomes & Maps	NLM Catalog	
Homology	Nucleotide OMIM	pr

nerging, rapidly evolving situation.

- mation from CDC: https://www.coronavirus.gov.
- om NIH: https://www.nih.gov/coronavirus.
- and clinical content: https://www.ncbi.nlm.nih.gov/sars-cov-2/.

secondary database

lews & Blog

wnload

BI data to your

Learn

Find help documents, attend a class or watch a tutorial

rimary database

PubMed Bookshelf PubMed Central **BLAST** Nucleotide Genome

Popular Resources

SNP

Gene

Protein

PubChem

GenBank - A PRIMARY NUCLEOTIDE SEQUENCE DATABASE

of all publicly available DNA sequences

•GenBank is part of the International Nucleotide Sequence Database European Nucleotide Archive (ENA), and GenBank at NCBI

•These three organizations exchange data on a daily basis

- •GenBank ® is the NIH genetic sequence database, an annotated collection
- Collaboration, which comprises the DNA DataBank of Japan (DDBJ), the

```
LOCUS
           MF084995
                                    570 bp
                                              mRNA
                                                             INV 08-JAN-2018
                                                     linear
           Acanthamoeba castellanii Pam18 isoform A mRNA, complete cds.
DEFINITION
ACCESSION
           MF084995
VERSION
           MF084995.1
KEYWORDS
SOURCE
           Acanthamoeba castellanii
           Acanthamoeba castellanii
  ORGANISM
           Eukaryota; Amoebozoa; Discosta; Longamoebia; Centramoebida;
           Acanthamoebidae; Acanthamoeba.
REFERENCE
           1 (bases 1 to 570)
           Wojtkowska, M., Buczek, D., Suzuki, Y., Shabardina, V., Makalowski, W.
 AUTHORS
           and Kmita,H.
           The emerging picture of the mitochondrial protein import complexes
 TITLE
           of Amoebozoa supergroup
           BMC Genomics 18 (1), 997 (2017)
  JOURNAL
  PUBMED
           29284403
            Publication Status. Online-Only
  REMARK
REFERENCE
           2 (bases 1 to 570)
           Buczek, D., Wojtkowska, M., Suzuki, Y., Makalowski, W. and Kmita, H.
 AUTHORS
 TITLE
           Direct Submission
  JOURNAL
           Submitted (09-MAY-2017) Adam Mickiewicz University, Institute of
           Molecular Biology and Biotechnology, Umultowska 89, Poznan 61-614,
           Poland
           ##Assembly-Data-START##
COMMENT
                                 :: Trinity De Novo Assembly v. 2012.10.05
           Assembly Method
           Sequencing Technology :: Illumina
           ##Assembly-Data-END##
                    Location/Qualifiers
FEATURES
                    1..570
     source
                    /organism="Acanthamoeba castellanii"
                    /mol_type="mRNA"
                    /db_xref="taxon:5755"
    CDS
                    113..406
                    /note="Pam18_A"
                    /codon_start=1
                    /product="Pam18 isoform
                    /protein_id="AUI80419.1"
                    /translation="MNAYKHFKAGNLTLPKGMVPKGPSRMKSYYTGGFESEMTRAEAA
                    LILSVRQGASKEKIKMAHRRIMLANHPDNGGSDYVASKVNEAKDLLLKDLGDD"
ORIGIN
       1 ccggaacttg catctgcgac catctgccgc tgtatcgatc cgggagcaat tggctactct
       61 tcttgtggcg ggtgtggtga ttgctggtgt ggccatcggt gggcgcgtgg ctatgaacgc
      121 ctacaagcac ttcaaggccg gcaacttgac cctccccaag ggcatggtgc ccaagggtcc
      181 atcgaggatg aagtcctact acacgggcgg ctttgagtcg gagatgaccc gcgccgaagc
      241 cgctctcatc ctcagtgtcc gacaaggcgc ctcgaaggag aagatcaaga tggcccacag
      301 gcggatcatg ttggcgaacc atcccgacaa tggaggcagc gactacgtgg cgtcgaaggt
      361 gaacgaagcc aaggacctgc tgctcaagga tctcggcgac gactgaggcc cctcttccaa
      481 acaccgccgc cgccgccgcc accagagaga tcggggctgt acagagtact acaccaccat
      541 atatgcacac ccatattacc aacaaaaaaa
```

11

GenBank record example

Hyperlinked features can bring you to another NCBI database such as

- taxonomy
- **PubMed**
- protein

or

extract a particular feature from the record

LOCUS MF084995 570 bp mRNA linear INV 08-JAN-2018 Acanthamoeba castellanii Pam18 isoform A mRNA, complete cds. DEFINITION ACCESSION MF084995 VERSION MF084995.1 **KEYWORDS** SOURCE Acanthamoeba castellanii Acanthamoeba castellanii ORGANISM Eukaryota; Amoebozoa; Discosea; Longamoebia; Centramoebida; Acanthamoebidae; Acanthamoeba. REFERENCE 1 (bases 1 to 570) Wojtkowska,M., Buczek,D., Suzuki,Y., Shabardina,V., Makalowski,W. AUTHORS and Kmita,H. The emerging picture of the mitochondrial protein import complexes TITLE of Amoebozoa supergroup BMC Genomics 18 (1), 997 (2017) JOURNAL PUBMED <u>29284403</u> REMARK Publication Status: Online-Only REFERENCE 2 (bases 1 to 570) Buczek, D., Wojtkowska, M., Suzuki, Y., Makalowski, W. and Kmita, H. AUTHORS TITLE Direct Submission Submitted (09-MAY-2017) Adam Mickiewicz University, Institute of JOURNAL Molecular Biology and Biotechnology, Umultowska 89, Poznan 61-614, Poland COMMENT ##Assembly-Data-START## :: Trinity De Novo Assembly v. 2012.10.05 Assembly Method Sequencing Technology :: Illumina ##Assembly-Data-END## FEATURES Location/Qualifiers 1..570 source /organism="Acanthamoeba castellanii" /mol_type="mRNA" /db_xref="taxon:5755" 113..406 CDS /note="Pam18-A" /codon_start=1 /product="Pam18 isoform A" /protein_id="AUI80419.1" /translation="MNAYKHFKAGNLTLPKGMVPKGPSRMKSYYTGGFESEMTRAEAA LILSVRQGASKEKIKMAHRRIMLANHPDNGGSDYVASKVNEAKDLLLKDLGDD" ORIGIN 1 ccggaacttg catctgcgac catctgccgc tgtatcgatc cgggagcaat tggctactct 61 tcttgtggcg ggtgtggtga ttgctggtgt ggccatcggt gggcgcgtgg ctatgaacgc 121 ctacaagcac ttcaaggccg gcaacttgac cctccccaag ggcatggtgc ccaagggtcc 181 atcgaggatg aagtcctact acacgggcgg ctttgagtcg gagatgaccc gcgccgaagc 241 cgctctcatc ctcagtgtcc gacaaggcgc ctcgaaggag aagatcaaga tggcccacag 301 gcggatcatg ttggcgaacc atcccgacaa tggaggcagc gactacgtgg cgtcgaaggt 361 gaacgaagcc aaggacctgc tgctcaagga tctcggcgac gactgaggcc cctcttccaa 481 acaccgccgc cgccgccgcc accagagaga tcggggctgt acagagtact acaccaccat 541 atatgcacac ccatattacc aacaaaaaaa

11

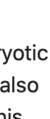
> BMC Genomics. 2017 Dec 29;18(1):997. doi: 10.1186/s12864-017-4383-1.

The emerging picture of the mitochondrial protein import complexes of Amoebozoa supergroup

Małgorzata Wojtkowska¹, Dorota Buczek²³, Yutaka Suzuki⁴, Victoria Shabardina³, Wojciech Makałowski ³, Hanna Kmita ²

Affiliations + expand PMID: 29284403 PMCID: PMC5747110 DOI: 10.1186/s12864-017-4383-1 Free PMC article

Abstract

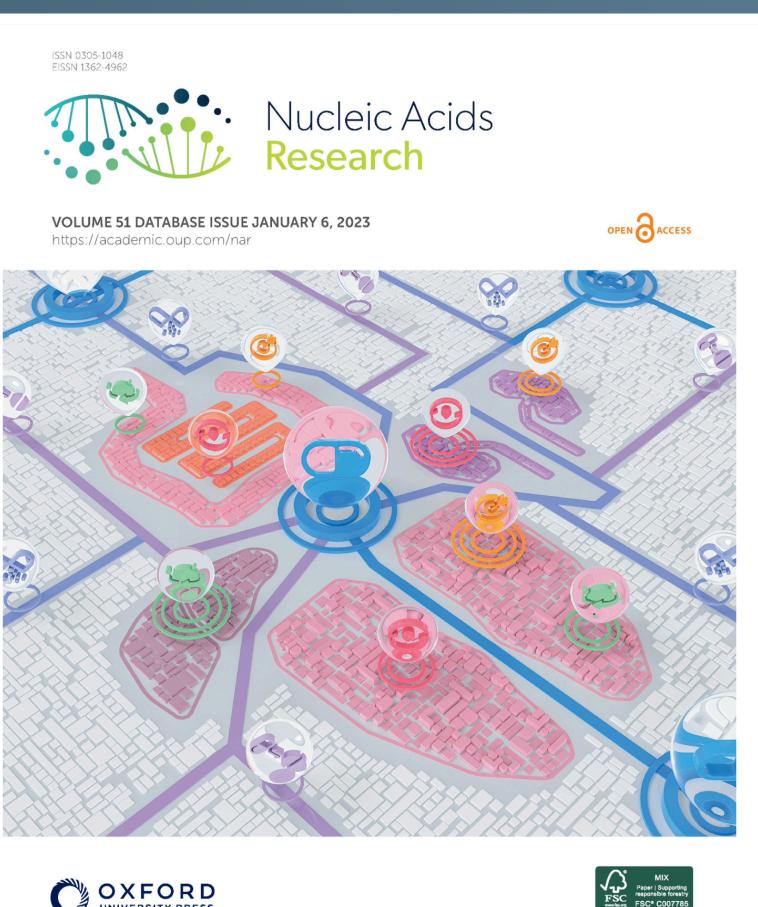

Background: The existence of mitochondria-related organelles (MROs) is proposed for eukaryotic organisms. The Amoebozoa includes some organisms that are known to have mitosomes but also organisms that have aerobic mitochondria. However, the mitochondrial protein apparatus of this supergroup remains largely unsampled, except for the mitochondrial outer membrane import complexes studied recently. Therefore, in this study we investigated the mitochondrial inner membrane and intermembrane space complexes, using the available genome and transcriptome sequences.

Results: When compared with the canonical cognate complexes described for the yeast Saccharomyces cerevisiae, amoebozoans with aerobic mitochondria, display lower differences in the number of subunits predicted for these complexes than the mitochondrial outer membrane complexes, although the predicted subunits appear to display different levels of diversity in regard to phylogenetic position and isoform numbers. For the putative mitosome-bearing amoebozoans, the number of predicted subunits suggests the complex elimination distinctly more pronounced than in the case of the outer membrane ones.

Conclusion: The results concern the problem of mitochondrial and mitosome protein import machinery structural variability and the reduction of their complexity within the currently defined supergroup of Amoebozoa. This results are crucial for better understanding of the Amoebozoa taxa of both biomedical and evolutionary importance.

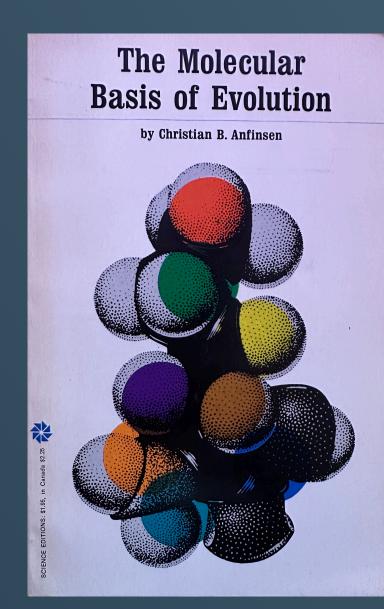
Keywords: Amoebozoa; MIA complex; Mitochondria; Mitosomes; OXA complex; PAM complex; Protein import; TIM22 complex; TIM23 complex; small Tims.

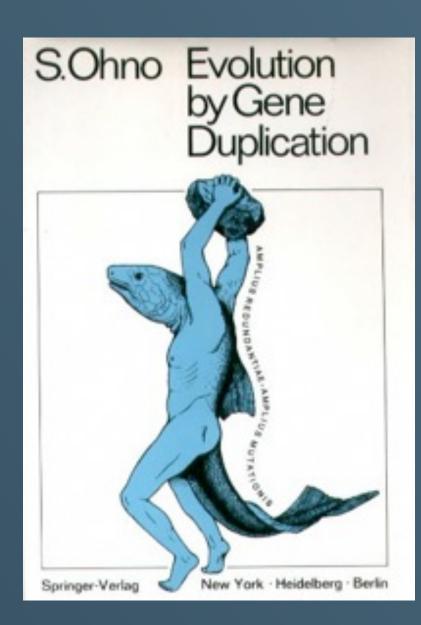
	MF084995 570 bp mRNA linear INV 08-JAN-2018	Pick Primers
DEFINITION Acanthamoeba castellanii Pam18 isoform A mRNA, complete cds. ACCESSION MF084995 Highlight Sequence Features		Highlight Sequence Features
VERSION	SION MF084995.1	
KEYWORDS		Find in this Sequence
SOURCE	Acanthamoeba castellanii	
ORGANISM	<u>Acanthamoeba castellanii</u>	
	Eukaryota; Amoebozoa; Discosea; Longamoebia; Centramoebida;	Related information
	Acanthamoebidae; Acanthamoeba.	
REFERENCE	1 (bases 1 to 570)	Protein
AUTHORS	Wojtkowska,M., Buczek,D., Suzuki,Y., Shabardina,V., Makalowski,W.	PubMed
	and Kmita,H.	
TITLE	The emerging picture of the mitochondrial protein import complexes	Taxonomy
	of Amoebozoa supergroup	Full text in PMC
JOURNAL	BMC Genomics 18 (1), 997 (2017)	
PUBMED	29284403	PubMed (Weighted)
REMARK	Publication Status: Online-Only	
REFERENCE	2 (bases 1 to 570)	
AUTHORS	Buczek,D., Wojtkowska,M., Suzuki,Y., Makalowski,W. and Kmita,H.	
TITLE	Direct Submission	Recent activity
JOURNAL	Submitted (09-MAY-2017) Adam Mickiewicz University, Institute of	Turn Off Clear
	Molecular Biology and Biotechnology, Umultowska 89, Poznan 61–614,	Acanthamoeba castellanii Pam18 isoform A
	Poland	mRNA, complete cds Nucleotide
COMMENT	##Assembly-Data-START## Accomply Mathad	
	Assembly Method :: Trinity De Novo Assembly v. 2012.10.05	Mus musculus muscle nicotinic
	Sequencing Technology :: Illumina ##Accombly_Data_END##	acetylcholine receptor mRNA, partia Nucleotide
FEATURES	##Assembly-Data-END##	
	Location/Qualifiers 1570	C makalowski AND cds (75473)
source	/organism="Acanthamoeba castellanii"	Nucleotide
	/mol_type="mRNA"	Human Alu-Sb2 repeat, clone HALUSB11
	/db_xref="taxon: <u>5755</u> "	Nucleotide
CDS	113406	
005	/note="Pam18-A"	🔍 makalowski (198935)
	/codon_start=1	Nucleotide
	/product="Pam18 isoform A"	
	/protein_id="AUI80419.1"	See more
	/translation="MNAYKHFKAGNLTLPKGMVPKGPSRMKSYYTGGFESEMTRAEAA	
	LILSVRQGASKEKIKMAHRRIMLANHPDNGGSDYVASKVNEAKDLLLKDLGDD"	
ORIGIN		
1 c	cggaacttg catctgcgac catctgccgc tgtatcgatc cgggagcaat tggctactct	
61 t	cttgtggcg ggtgtggtga ttgctggtgt ggccatcggt gggcgcgtgg ct <mark>atgaacgc</mark>	
121 🛛	tacaagcac ttcaaggccg gcaacttgac cctccccaag ggcatggtgc ccaagggtcc	113406
181 🧧	atcgaggatg aagtcctact acacgggcgg ctttgagtcg gagatgaccc gcgccgaagc	/note="Pam18-A"
241 🖸	cgctctcatc ctcagtgtcc gacaaggcgc ctcgaaggag aagatcaaga tggcccacag	/codon_start=1
301 🧧	jcggatcatg ttggcgaacc atcccgacaa tggaggcagc gactacgtgg cgtcgaaggt	/product="Pam18 isoform A"
361 🧧	jaacgaagcc aaggacctgc tgctcaagga tctcggcgac gactga <mark>ggcc cctcttccaa</mark>	/protein_id=" <u>AUI80419.1</u> "
421 a	ataacgaga gcaccaaaag gaccaccccc accaaacaca gacacaccc gagacaccac	/translation="MNAYKHFKAGNLTLPKGMVPKGPSRMKSYYTG
481 a	acaccgccgc cgccgccgcc accagagaga tcggggctgt acagagtact acaccaccat	LILSVRQGASKEKIKMAHRRIMLANHPDNGGSDYVASKVNEAKDLL
	atatgcacac ccatattacc aacaaaaaaa	

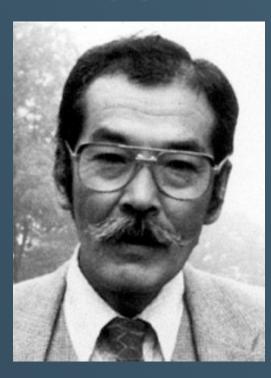


SECONDARY (SPECIALIZED) DATABASES

- Boom of biological databases
- Every year first issue of Nucleic Acids Research is \bullet dedicated to biological databases
 - <u>https://academic.oup.com/nar/issue/51/D1</u>
 - this year's database issue includes 1764 databases
 - the first collection published in 1993 contained description of 24 databases



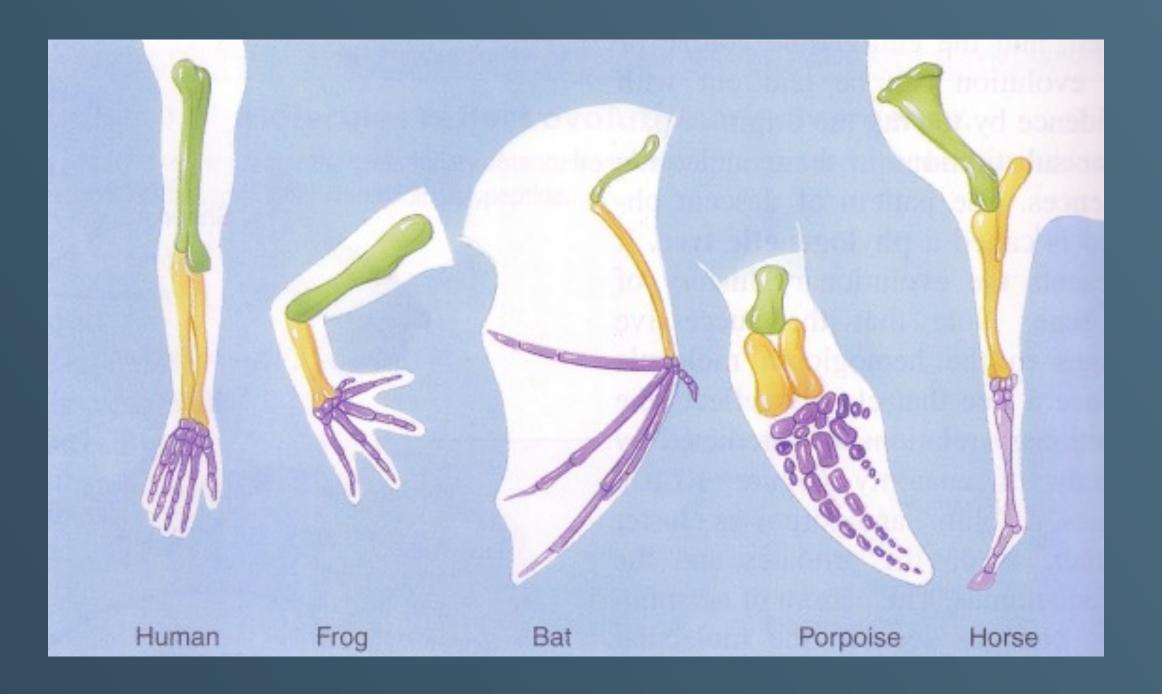



EVOLUTIONARY BASIS OF BIOINFORMATICS

1959

1970

The neutral theory of molecular evolution

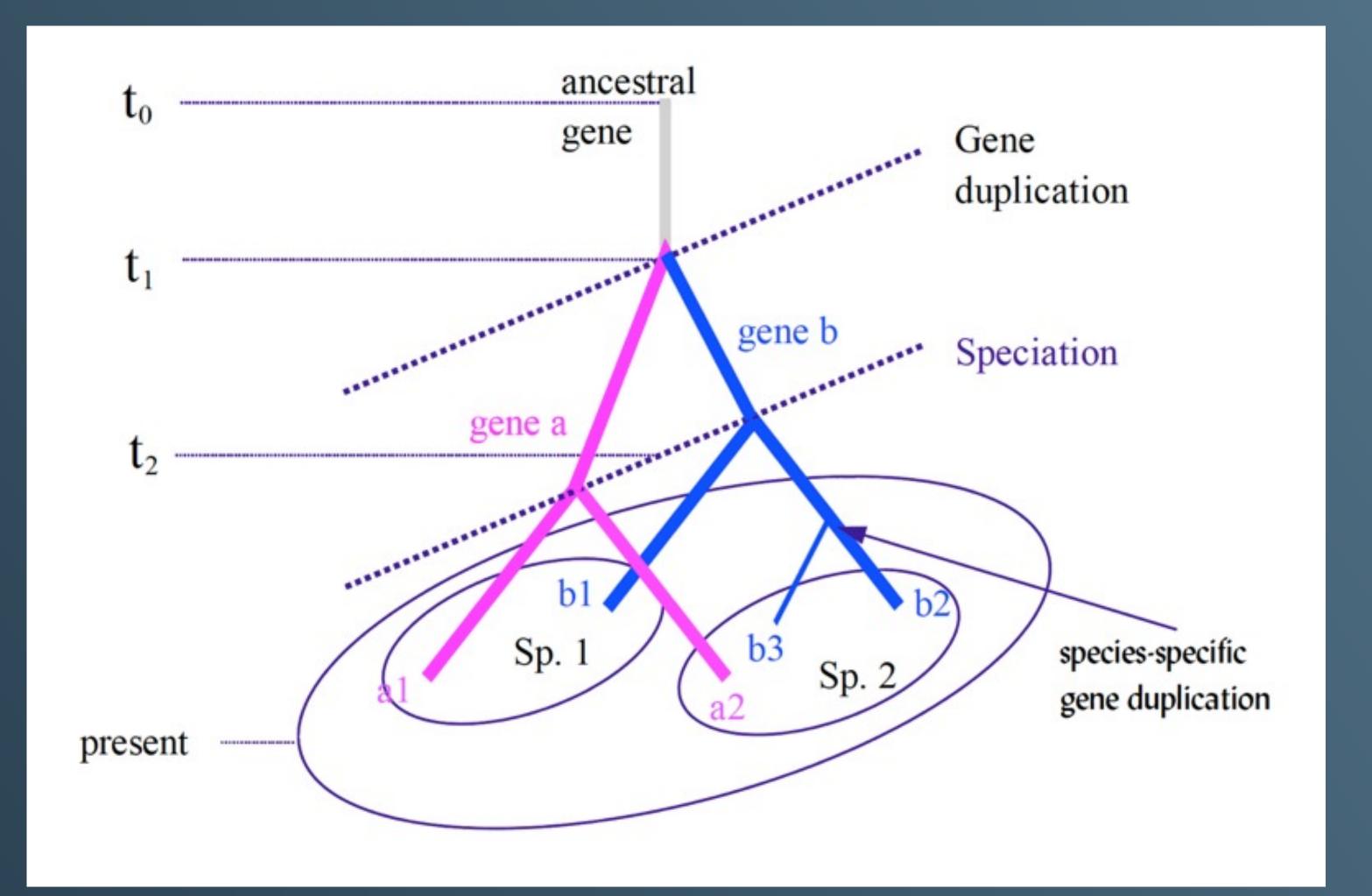

Motoo Kimura

Copyrighted Material

1983

HOMOLOGS

Two anatomical structures or behavioral traits within different organisms which originated from a structure or trait of their common ancestral organism. The structures or traits in their current forms may not necessarily perform the same functions in each organism, nor perform the functions it did in the common ancestor. An example: the wing of a bat, the fin of a whale and the arm of a man are homologous structures.


http://www.everythingbio.com/glos/definition.php?ID=3385

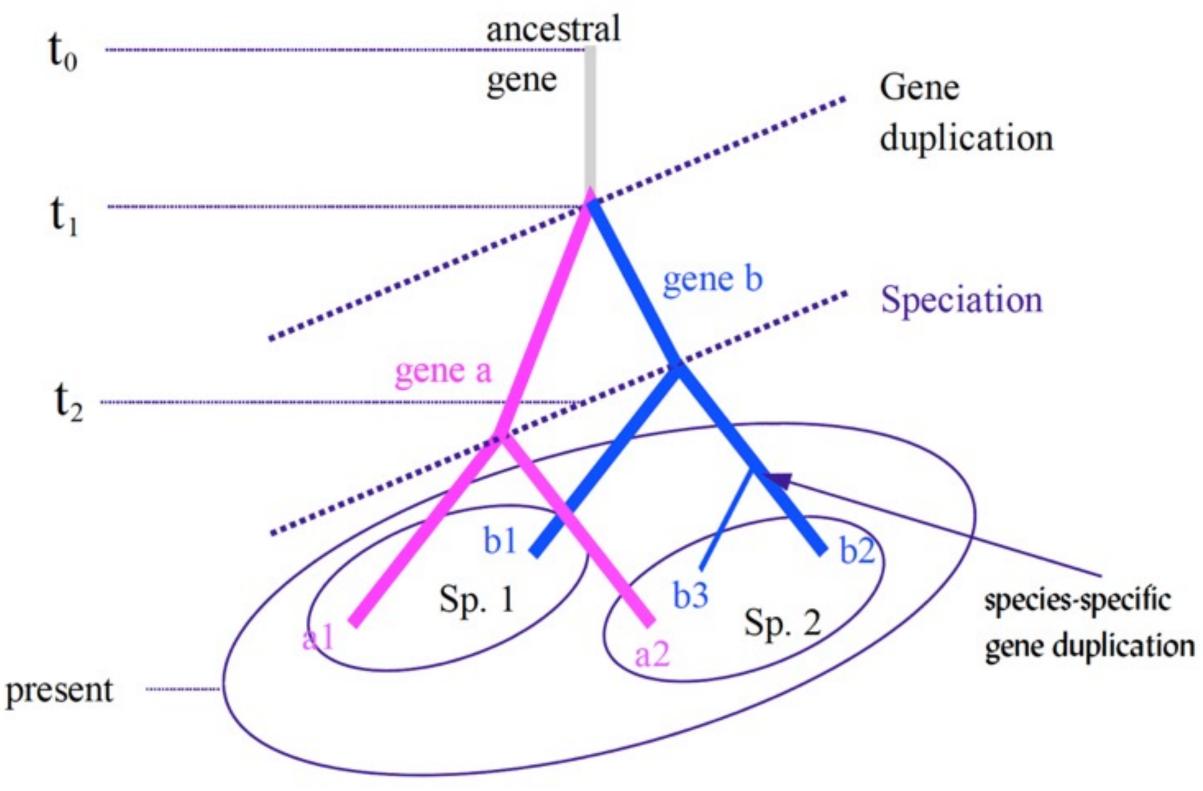
HOMOLOGS AT THE MOLECULAR LEVEL

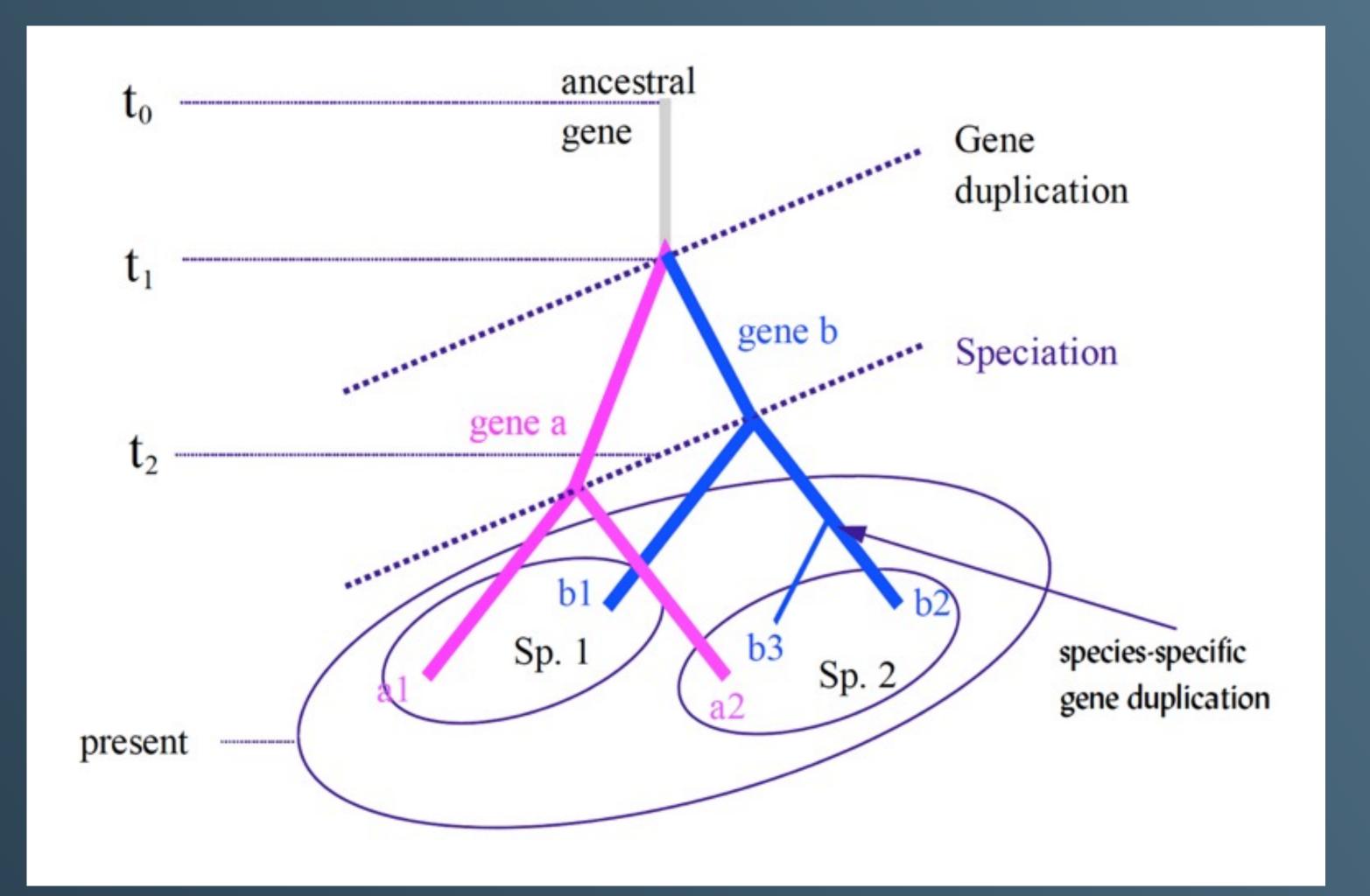
cow sheep goat horse donkey ostrich emu turkey ATG---ACTAACATTCGAAAGTCCCACCCACTAATAAAAATTGTAAAC ATG---ATCAACATCCGAAAAAACCCACCCACTAATAAAAAATTGTAAAC ATG---ACCAACATCCGAAAAGACCCACCCATTAATAAAAAATTGTAAAC ATG---ACAAACATCCGGAAATCTCACCCACTAATTAAAAATCATCAAT ATG---ACAAACATCCGAAAATCCCCACCGCTAATTAAAAATCATCAAT ATGGCCCCCCAACATTCGAAAAATCGCACCCCCTGCTCAAAAATTATCAAC ATGGCCCCCTAACATCCGAAAATCCCCACCCCTGCTCAAAAATTATCAAC ATGGCCCCCAACATTCGAAAATCCCCACCCCTTACTCAAAATCATCAAC


Two sequences that share common ancestry. Significant sequence similarity usually suggests homology, however sequence similarity may occur also by chance and some homologous sequences may diverge beyond detectable similarity.

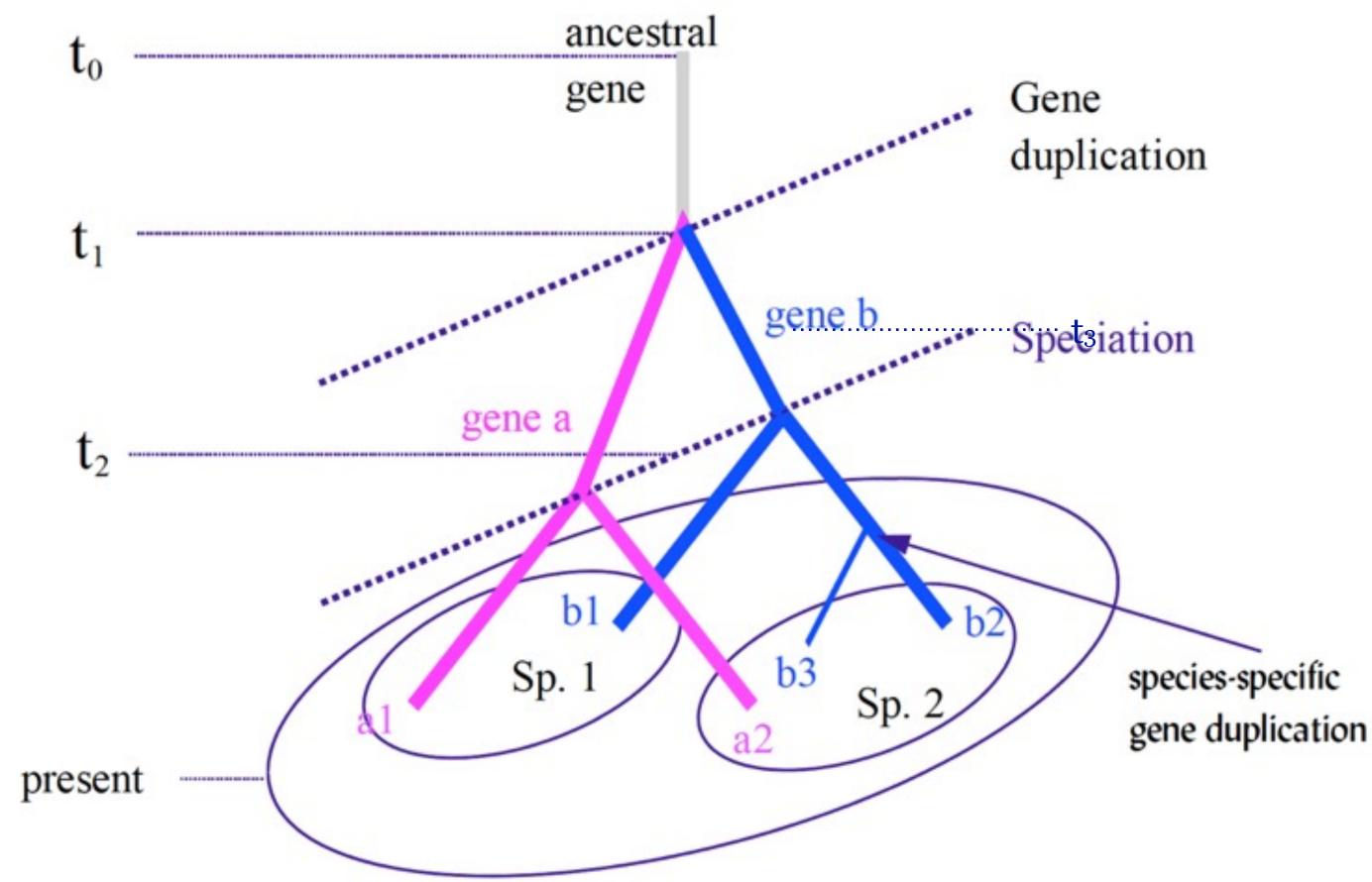
EVOLUTIONARY BASIS OF BIOINFORMATICS

HOMOLOGS: ORTHOLOGS AND PARALOGS

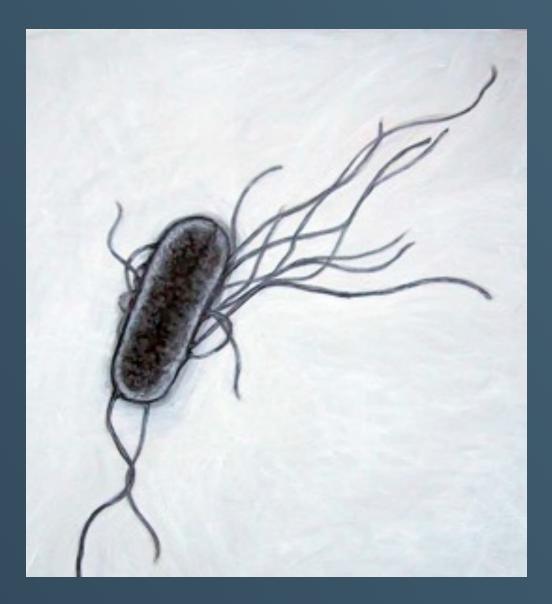

ORTHOLOGS. Genes or sequences that result from a speciation event followed by a sequence divergence. Such genes cannot exist side by side in the same genome. The last common ancestor of two orthologous sequences existed just before speciation event.

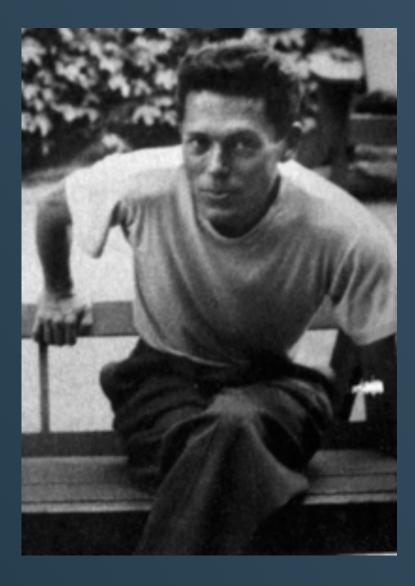

HOMOLOGS: ORTHOLOGS AND PARALOGS

PARALOGS. Genes or sequences that resulted from duplication of genetic material followed by a sequence divergence. Such genes may descend and diverge while existing side by side in the same genome. If speciation occurs after gene duplication, then two paralogous genes may exist in two different genomes. The last common ancestor of two paralogous sequences existed just before duplication event.



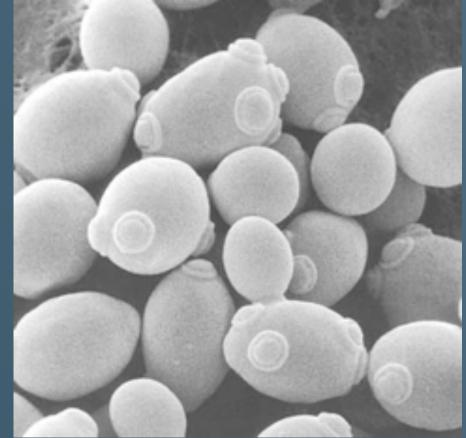
EVOLUTIONARY BASIS OF BIOINFORMATICS


HOMOLOGS: ORTHOLOGS AND PARALOGS


Compared Genes	Relation	Time of the last comm. ancestor	Evolutionary event at the time of last common ancestor	Presence in the same species
A - B	paralogy	t ₁	gene duplication	yes
A1 - A2	orthology	t ₂	speciation	no
A1 - B1	paralogy	t ₁	gene duplication	yes
A1 - B2	paralogy	t ₁	gene duplication	no
A1 - B3	paralogy	t ₁	gene duplication	no
A2 - A1	orthology	t ₂	speciation	no
A2 - B1	paralogy	t ₁	gene duplication	no
A2 - B2	paralogy	t ₁	gene duplication	yes
A2 - B3	paralogy	t ₁	gene duplication	yes
B1 - A1	paralogy	t ₁	gene duplication	yes
B1 - A2	paralogy	t ₁	gene duplication	no
B1 - B2	orthology	t ₂	speciation	no
B1 - B3	orthology	t ₂	speciation	no
B2 - A1	paralogy	t ₁	gene duplication	no
B2 - A2	paralogy	t ₁	gene duplication	yes
B2 - B1	orthology	t ₂	speciation	no
B2 - B3	paralogy	t ₃	gene duplication	yes
B3 - A1	paralogy	t ₁	gene duplication	yes
B3 - A2	paralogy	t 1	gene duplication	no
B3 - B1	orthology	t ₂	speciation	no
B3 - B2	paralogy	t ₃	gene duplication	yes

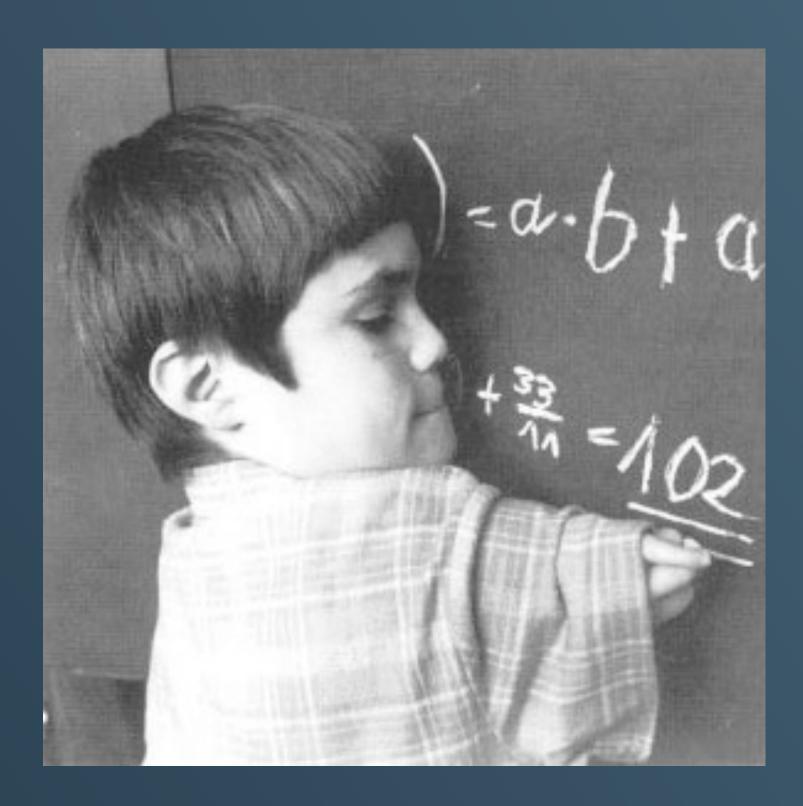
COMPARATIVE GENOMICS

What is true for *E. coli* is also true for elephant. J. Monod, c. 1961



COMPARATIVE GENOMICS

What is true for yeast is also true for human. D. Botstein, 1988



COMPARATIVE GENOMICS

What is true for mouse is not necessarily true for human...

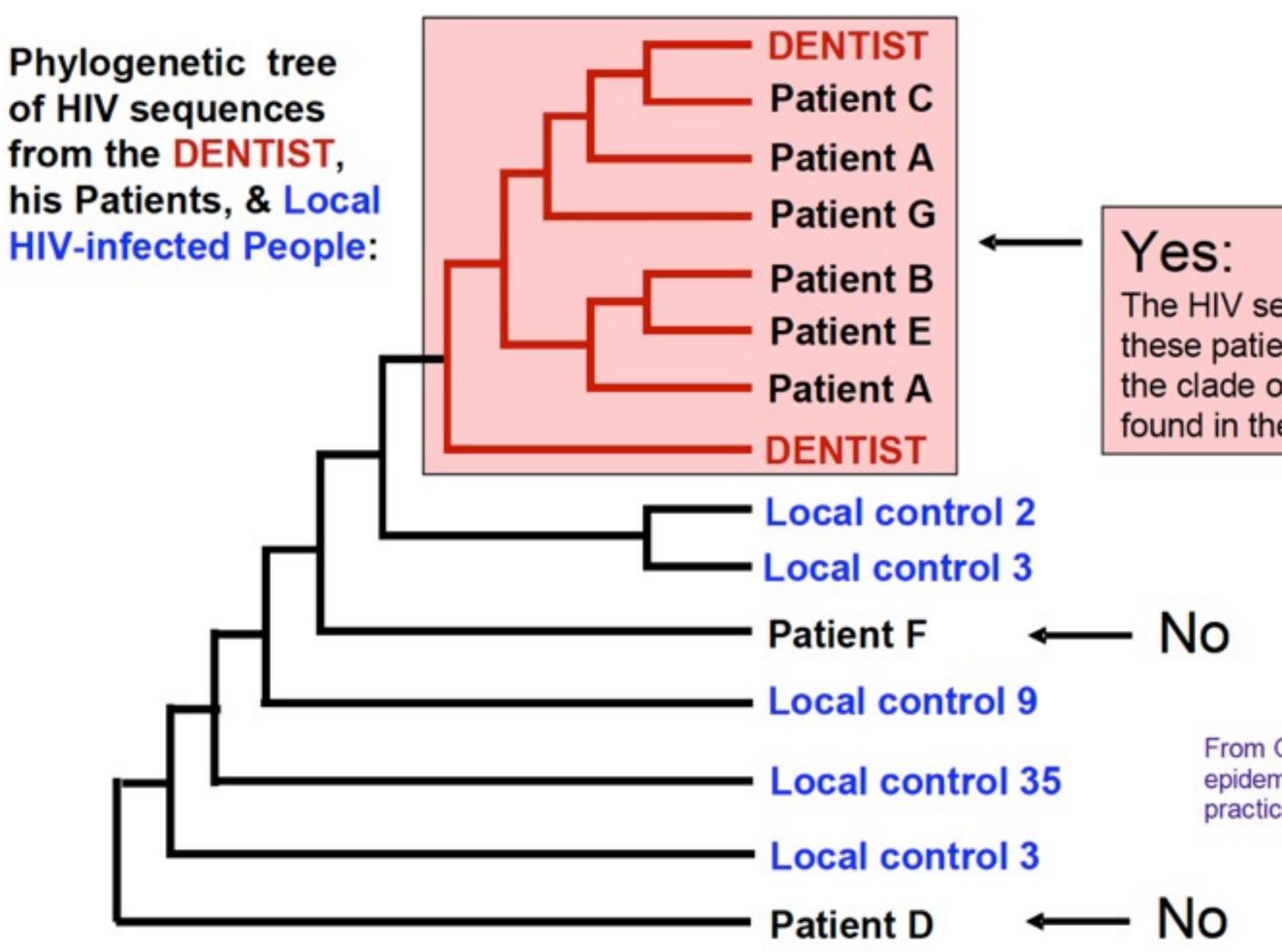
10,000 victims of thalidomide

Is Bioinformatics Useful?

THE DENTIST AND THE PATIENT: **Two years** after routine dental surgery, college student Kim Bergalis developed AIDS. Now her dentist is dead of the disease, and she charges that he infected her. "It's hard to believe," she says, "but it happened to me."

OCTOBER 22, 1990 = \$1.95

weekly

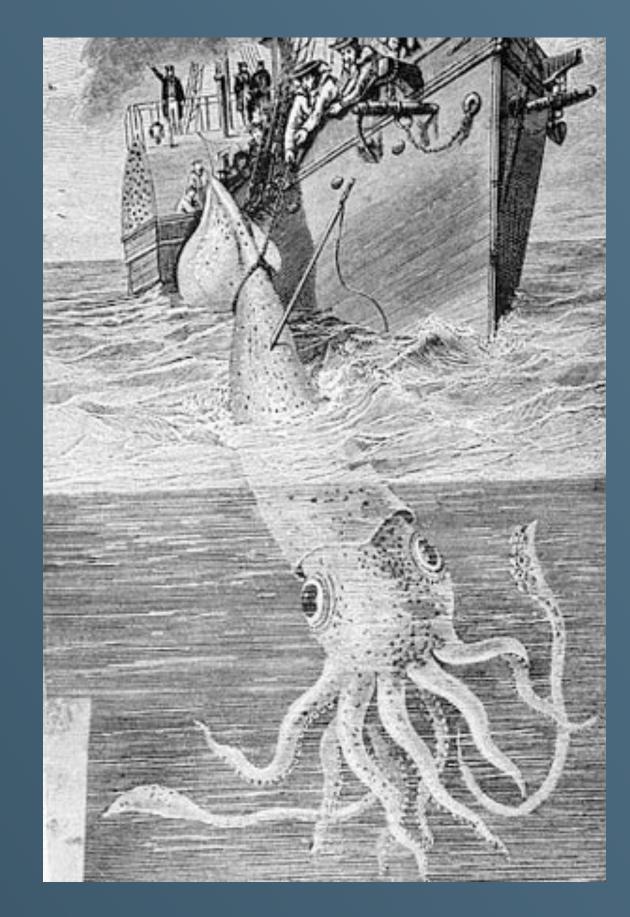


Did the Florida Dentist infect his patients with HIV?

Kimberly Bergalis (1968-1991)

> David J. Acer (1940-1990)

DID THE FLORIDA DENTIST INFECT HIS PATIENTS WITH HIV?



The HIV sequences from these patients fall within the clade of HIV sequences found in the dentist.

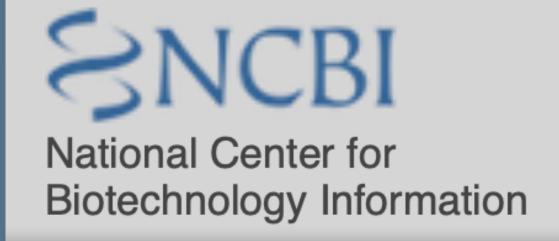
> From Ou et al. (1992) Molecular epidemiology of HIV transmission in a dental practice. Science. 256:1165-71.

>Chilean Blob TAATACTAACTATATCCCCTACTCCCATTCTCATCGGGGGGTT GAGGAGGACTAAACCAGACTCAACTCCGAAAAATTATAGCTT ACTCATCAATCGCCCACATAGGATGAATAACCACAATCCTAC **CCTACAATACAACCATAACCCTACTAAACCTACTAATCTATG** TCACAATAACCTTCACCATATTCATACTATTTATCCAAAACT CAACCACAACCACACTATCTCTGTCCCAGACATGAAACAAAA CACCCATTACCACAACCCTTACCATACTTACCCTACTTTCCA TAGGGGGCCTCCCACCACTCTCGGGCTTTATCCCCCAAATGAA TAATTATTCAAGAACTAACAAAAAACGAAACCCTCATCATAC CAACCTTCATAGCCACCACAGCATTACTCAACCTCTACTTCT ATATACGCCTCACCTACTCAACAGCACTAACCCTATTCCCCT CCACAAATAACATAAAAATAAAATGACAATTCTACCCCACAA AACGAATAACCCTCCTGCCAACAGCAATTGTAATATCAACAA TACTCCTACCCCTTACACCAATACTCTCCACCCTATTATAG

Lineage Report

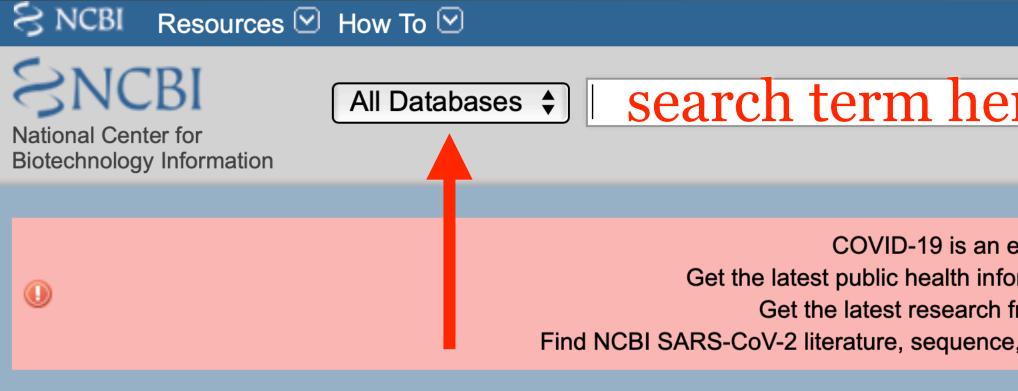
Cetacea [whales & dolphins]				
. Odontoceti [whales & dolphins]				
 Physeteridae [whales & dolphins] 				
Physeter catodon	1085	3 hits	[whales & dolphins]	Physeter ca
Kogia breviceps	638	1 hit	[whales & dolphins]	Kogia brevi
Orcaella brevirostris		1 hit	[whales & dolphins]	Orcaella br
Grampus griseus	593	1 hit	[whales & dolphins]	Grampus gri
Feresa attenuata	592	2 hits	[whales & dolphins]	Feresa atte
Tursiops truncatus (bottle-nosed dolphin)		1 hit	[whales & dolphins]	Tursiops tr
Globicephala melas		3 hits	[whales & dolphins]	Globicephal
Peponocephala electra		2 hits	[whales & dolphins]	Peponocepha
Globicephala macrorhynchus		4 hits	[whales & dolphins]	Globicephal
Pseudorca crassidens	577	3 hits	[whales & dolphins]	Pseudorca c
Orcinus orca (Orca)		54 hits	[whales & dolphins]	Orcinus orc
Sotalia fluviatilis		2 hits	[whales & dolphins]	Sotalia flu
Platanista minor		1 hit	[whales & dolphins]	Platanista
Steno bredanensis	566	2 hits	[whales & dolphins]	Steno breda
. Megaptera novaeangliae		5 hits	[whales & dolphins]	Negaptera n
. Balaenoptera bonaerensis	630	1 hit	[whales & dolphins]	Balaenopter
. Eubalaena japonica		1 hit	[whales & dolphins]	Eubalaena j
. Balaenoptera brydei		2 hits	[whales & dolphins]	Balaenopte
. Balaena mysticetus (Greenland right whale)		2 hits	[whales & dolphins]	Balaena my
. Balaenoptera musculus	614	1 hit	[whales & dolphins]	Balaenopte
. Balaenoptera edeni		1 hit	[whales & dolphins]	Balaenopte
. Balaenoptera omurai	603	2 hits	[whales & dolphins]	Balaenopte
. Eschrichtius robustus (California gray whale) .		2 hits	[whales & dolphins]	Eschrichti
. Balaenoptera borealis		1 hit	[whales & dolphins]	Balaenopte
. Caperea marginata	580	1 hit	[whales & dolphins]	Caperea ma
	569	1 hit	[whales & dolphins]	Balaenopte
. Balaenoptera physalus (finback whale)	509	1 1110	(whates a doiphins)	Baraenopte

vseter catodon NADH dehydrogenase subunit 2 (nad2) gene, ia breviceps complete mitochondrial genome aella brevirostris isolate 97 mitochondrion, complete ge mpus griseus mitochondrion, complete genome resa attenuata isolate 36 mitochondrion, complete genome siops truncatus mitochondrion, complete genome bicephala melas isolate GlomelG42 mitochondrion, partial onocephala electra isolate M6 mitochondrion, complete ge bicephala macrorhynchus isolate Glomac65 mitochondrion, udorca crassidens mitochondrion, complete genome inus orca isolate ENPTGA2 mitochondrion, complete genome alia fluviatilis haplotype 10 NADH dehydrogenase subunit atanista minor complete mitochondrial genome no bredanensis isolate StebreS9 mitochondrion, partial g aptera novaeangliae voucher GOM9049 NADH dehydrogenase s aenoptera bonaerensis mitochondrial DNA, complete genome alaena japonica mitochondrial DNA, complete genome aenopte



	> <u>emb AJ277029.2</u> Physeter macrocephalus mitochondrial genome Length=16428			
Ident		4 bits (581), Expect = 0.0 = 585/587 (99%), Gaps = 0/587 (0%) /Plus		
Query	1	TAATACTAACTATATCCCTACTCTCCATTCTCATCGGGGGTTGAGGAGGACTAAACCAGA	60	
Sbjct	4400	TAATACTAACTATATCCCTACTCCCATTCTCATCGGGGGTTGAGGAGGACTAAACCAGA	4459	
Query	61	CTCAACTCCGAAAAATTATAGCTTACTCATCAATCGCCCACATAGGATGAATAACCACAA	120	
Sbjct	4460	CTCAACTCCGAAAAATTATAGCTTACTCATCAATCGCCCACATAGGATGAATAACCACAA	4519	
Query	121	TCCTACCCTACAATACAACCATAACCCTACTAAACCTACTA	180	
Sbjct	4520	TCCTACCCTACAATACAACCATAACCCTACTAAACCTACTA	4579	
Query	181	TCACCATATTCATACTATTTATCCAAAACTCAACCACAACCACACTATCTCTGTCCCAGA	240	
Sbjct	4580	TCACCATATTCACACTATTTATCCAAAACTCAACCACAACCACACTATCTCTGTCCCAGA	4639	
Query	241	CATGAAACAAAACACCCATTACCACAACCCTTACCATACTTACCCTACTTTCCATAGGGG	300	
Sbjct	4640	CATGAAACAAAACACCCATTACCACAACCCTTACCATACTTACCCTACTTTCCATAGGGG	4699	
Query	301	GCCTCCCACCACTCTCGGGCTTTATCCCCCAAATGAATAATTATTCAAGAACTAACAAAAA	360	
Sbjct	4700	GCCTCCCACCACTCTCGGGCTTTATCCCCCAAATGAATAATTATTCAAGAACTAACAAAAA	4759	
Query	361	ACGAAACCCTCATCATACCAACCTTCATAGCCACCACAGCATTACTCAACCTCTACTTCT	420	
Sbjct	4760	AĊĠ ĂĂĠĊĊĊŦĊĂŦĊĂŦĂĊĊĂĂĊĊŦŦĊĂŦĂĠĊĊĂĊĊĂĊĂĠĊĂŦŦĂĊŦĊĂĂĊĊŦĊŦĂĊŦŦĊŦ	4819	
Query	421	ATATACGCCTCACCTACTCAACAGCACTAACCCTATTCCCCCTCCACAAATAACATAAAAA	480	
Sbjct	4820	ĂŦĂŦĂĊĠĊĊŦĊĂĊĊŦĂĊŦĊĂĂĊĂĠĊĂĊŦĂĂĊĊĊŦĂŦŦĊĊĊĊŦĊĊĂĊĂĂĂŦĂĂĊĂŦĂĂĂĂĂ	4879	
Query	481	TAAAATGACAATTCTACCCCACAAAACGAATAACCCTCCTGCCAACAGCAATTGTAATAT	540	
Sbjct	4880	TAAAATGACAATTCTACCCCACAAAACGAATAACCCTCCTGCCAACAGCAATTGTAATAT	4939	
Query	541	CAACAATACTCCTACCCCTTACACCAATACTCTCCACCCTATTAT		
Sbjct	4940	ĊĂĂĊĂĂŦĂĊŦĊĊŦĂĊĊĊĊŦŦĂĊĂĊĊĂĂŦĂĊŦĊŦĊĊĂĊĊĊŦĂŦŦĂŦ		

THE BEST IS TO START AT ONE OF CENTRAL REPOSITORIES


The home for big data in biology

https://www.ncbi.nlm.nih.gov

https://www.ebi.ac.uk

<u>https://www.ddbj.nig.ac.jp/index-e.html</u>

NCBI Home

Resource List (A-Z)

All Resources

Chemicals & Bioassays

Data & Software

DNA & RNA

Domains & Structures

Genes & Expression

Genetics & Medicine

Genomes & Maps

Homology

Literature

Proteins

Sequence Analysis

Taxonomy

Training & Tutorials

Variation

Welcome to NCBI

The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.

About the NCBI Mission Organization NCBI News & Blog

Submit

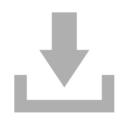
Deposit data or manuscripts into NCBI databases

Transfer NCBI data to your computer

Develop

Use NCBI APIs and code libraries to build applications

Identify an NCBI tool for your data analysis task


search term here, e.g. protein name

Search

COVID-19 is an emerging, rapidly evolving situation.

- Get the latest public health information from CDC: <u>https://www.coronavirus.gov</u>.
 - Get the latest research from NIH: https://www.nih.gov/coronavirus.
- Find NCBI SARS-CoV-2 literature, sequence, and clinical content: <u>https://www.ncbi.nlm.nih.gov/sars-cov-2/</u>.

Download

Learn

Find help documents, attend a class or watch a tutorial

Analyze

Research

Explore NCBI research and collaborative projects

Popular Resources PubMed **Bookshelf** PubMed Central **BLAST Nucleotide** Genome SNP Gene Protein **PubChem**

NCBI News & Blog

IgBLAST 1.17 is now available with improved identification of productive V gene sequences

30 Oct 2020

A new release of InRI AST (1 17) the

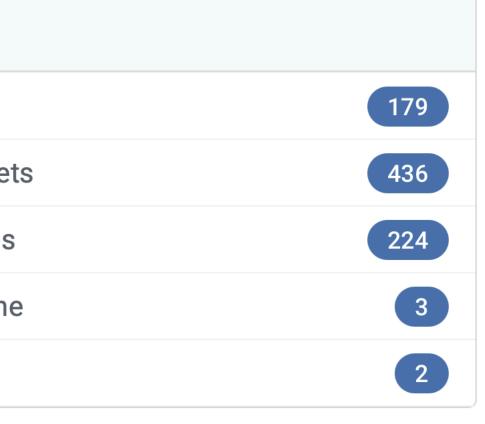
New feature in the dbGap submission portal: Automated study metadata

29 Oct 2020

dbGaP has recently released a new feature to simplify submissions and

Search NCB	81
------------	----

"globin x"


Results found in 20 databases

Literature		Genes
Bookshelf	0	Gene
MeSH	1	GEO DataSet
NLM Catalog	5	GEO Profiles
PubMed	32	HomoloGene
PubMed Central	101	PopSet

Genomes		Clinical
Assembly	7,566	ClinicalTrials.g
BioCollections	0	ClinVar
BioProject	31	dbGaP
BioSample	0	dbSNP
Genome	0	dbVar
Nucleotide	315	GTR
SRA	0	MedGen
Taxonomy	0	OMIM

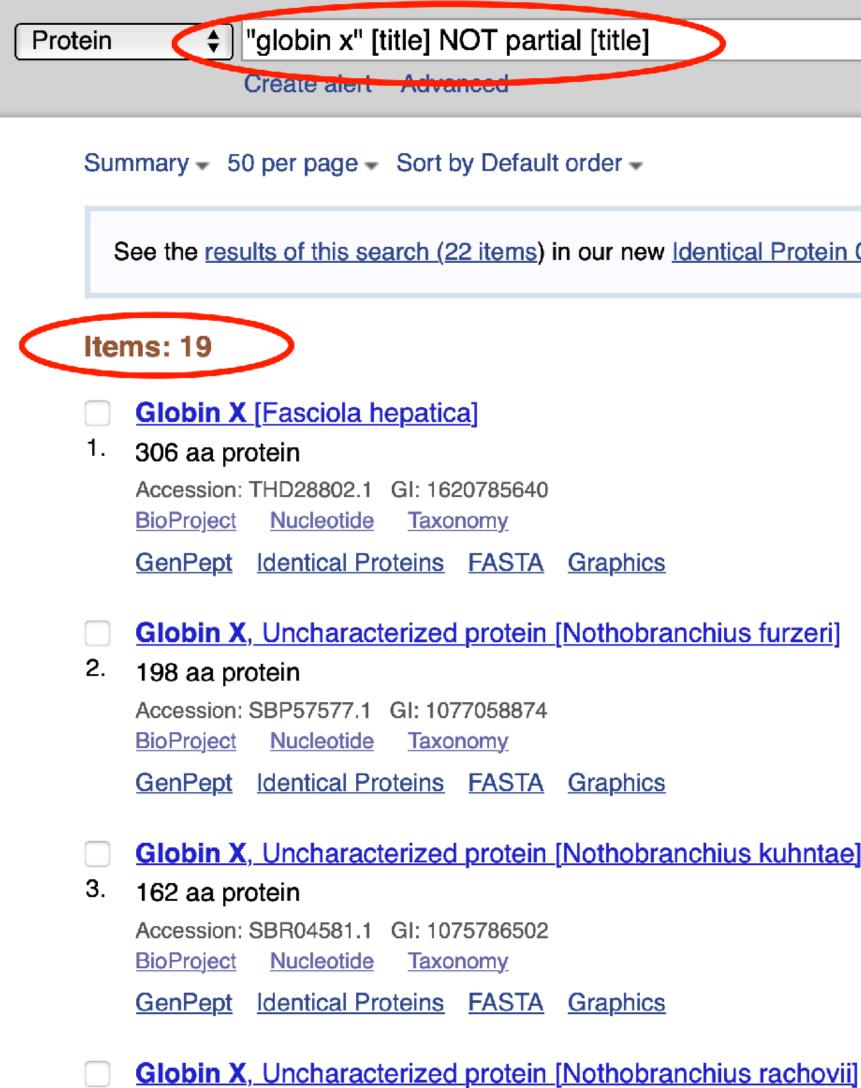
Search

×

Proteins	
Conserved Domains	3
Identical Protein Groups	38
Protein	426
Protein Family Models	1
Structure	742

.gov	0
	0
	0
	0
	35
	55
	0
	91

PubChem	
BioAssays	0
Compounds	0
Pathways	0
Substances	0

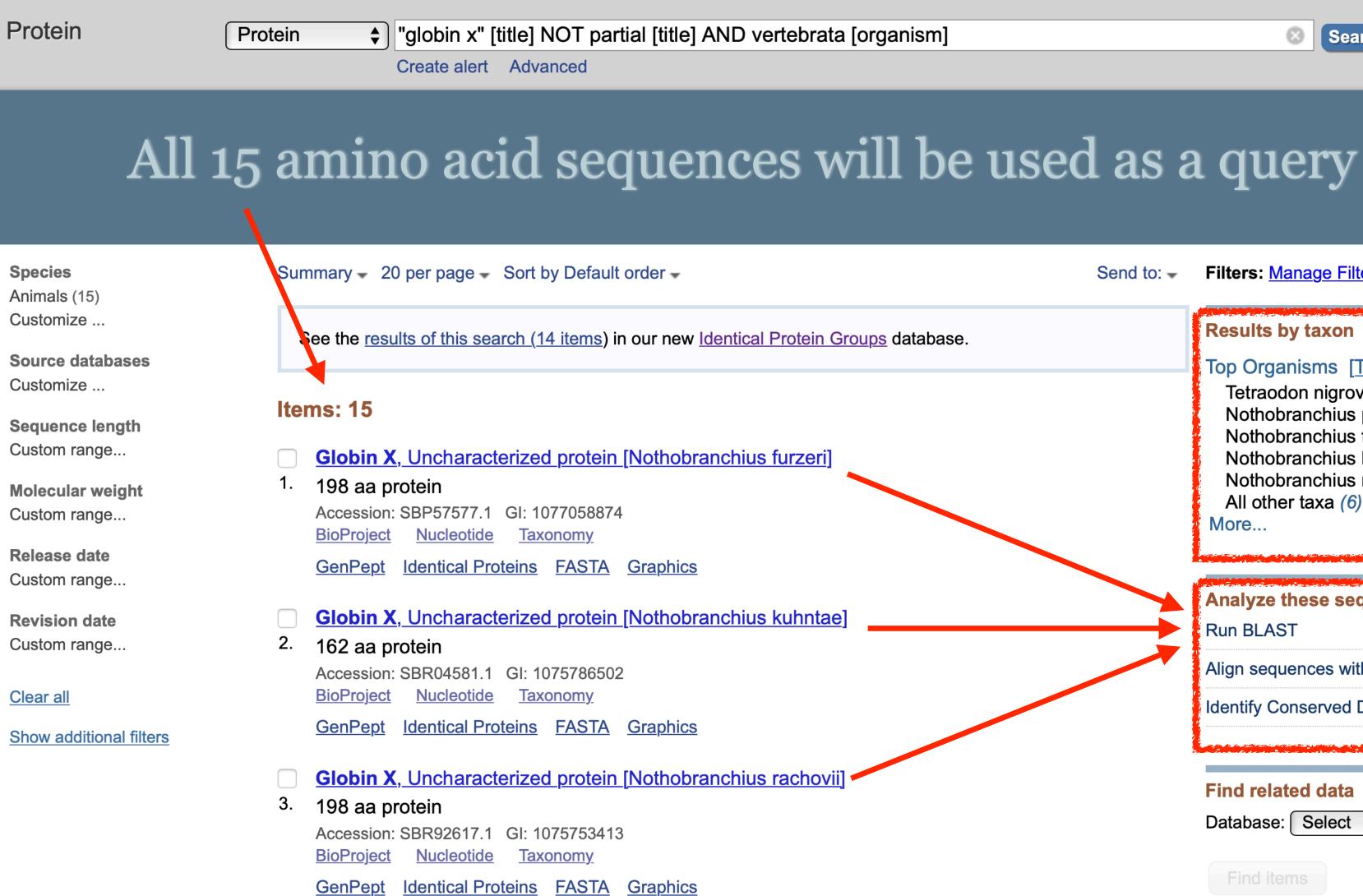

LET'S SEARCH FOR "GLOBIN X" SEQUENCES

Protein 🗘 "globin x"	Search	
Create alert Advanced		Help
Summary - 20 per page - Sort by Default order Send to: -	Filters: <u>Manage Filters</u>	
See Gene information for globin x globin in <u>Crassostrea gigas</u> <u>Danio rerio</u> <u>Musca domestica</u> <u>All 10 Gene records</u> x in <u>Hepatitis B virus</u> <u>Escherichia virus P2</u> <u>Escherichia virus Wphi</u> <u>All 50 Gene records</u>	Find related data Database: Select	
See the <u>results of this search (22 items</u>) in our new <u>Identical Protein Groups</u> database. Items: 1 to 20 0 275 < First < Prev Page 1 of 14 Next> Last>> globin X [Clonorchis sinensis]	Search details "globin x"[All Fields]	
1. 303 aa protein Accession: GAA47520.1 GI: 358339458 BioProject Nucleotide PubMed Taxonomy	Search See	more
GenPept Identical Proteins FASTA Graphics	Recent activity	
 globin X, partial [Platichthys flesus] 2. 152 aa protein Accession: CC003031.1 GI: 440575635 	<u>Turn Off</u> Q "globin x" (275)	<u>Clear</u> Protein
Nucleotide Taxonomy GenPept Identical Proteins FASTA Graphics	Phylogenetic analysis reveals wide distribution of globin X.	PubMed

WE CAN MAKE RESULTS MORE SPECIFIC

Protein 🗘 "globin x" [title]	Search
Create alert Advanced	Help
Summary - 20 per page - Sort by Default order - Send to:	Filters: Manage Filters
See the results of this search (22 items) in our new Mentical Protein Groups database.	Results by taxon
	Top Organisms [Tree]
Items: 1 to 20 of 157	Alvinella pompejana (134)
	Tetraodon nigroviridis (3) Nothobranchius kadleci (2)
<-Nirst < Prev Page 1 of 8 Next > Last	>> Nothobranchius pienaari (2)
Globin X [Fasciola hepatica]	Nothobranchius kuhntae (2) All other taxa (14)
1. 306 aa protein	More
Accession: THD28802.1 GI: 1620785640	
<u>BioProject</u> <u>Nucleotide</u> <u>Taxonomy</u>	Find related data
GenPept Identical Proteins FASTA Graphics	
Globin X, Uncharacterized protein [Nothobranchius furzeri]	Database: Select
2. 198 aa protein	Find items
Accession: SBP57577.1 GI: 1077058874	
BioProject Nucleotide Taxonomy	
GenPept Identical Proteins FASTA Graphics	Search details
Obstation V. I. In the second science in this state is the base state in the 1.	"globin x"[title]
Globin X, Uncharacterized protein [Nothobranchius kuhntae]	
3. 162 aa protein	

WE CAN MAKE RESULTS *EVEN* MORE SPECIFIC


		Search
		Help
	Send to: -	Filters: <u>Manage Filters</u>
Groups database.		► Fresults by taxon Cop Organisms [Tree] Tetraodon nigroviridis (3) Nothobranchius pienaari (2) Nothobranchius furzeri (2) Schistosoma mansoni (2) Nothobranchius kuhntae (1) All other taxa (9) More
		Analyze these sequences
		Align sequences with COBALT
		Identify Conserved Domains with CD-Search
		Find in these sequences
2		
		Find related data
		Database: Select
1		Find items

THE COOL STUFF STARTS NOW!

Protein	Protein
	COVID-19 is an en Get the latest public health inforr Get the latest research fro Find NCBI SARS-CoV-2 literature, sequence, a
Species Animals (15)	Summary - 20 per page - Sort by Default order -
Customize	See the results of this search (14 items) in our new Identic
Source databases	
Customize	
Sequence length	Items: 15
Custom range	Clobin V. Uncharacterized protein [Nethebranchi
-	 Globin X, Uncharacterized protein [Nothobranchi 1. 198 aa protein
Molecular weight	
Custom range	Accession: SBP57577.1 GI: 1077058874 BioProject Nucleotide Taxonomy
Release date	
Custom range	GenPept Identical Proteins FASTA Graphics
Revision date	Globin X, Uncharacterized protein [Nothobranchi
Custom range	2. 162 aa protein
U U	Accession: SBR04581.1 GI: 1075786502
<u>Clear all</u>	BioProject Nucleotide Taxonomy
	GenPept Identical Proteins FASTA Graphics
Show additional filters	·
	Globin X, Uncharacterized protein [Nothobranchi
	3. 198 aa protein
	Accession: SBR92617.1 GI: 1075753413 BioProject <u>Nucleotide</u> <u>Taxonomy</u>
	GenPept Identical Proteins FASTA Graphics

ND vertebrata [organism]	Search	
		Help
emerging, rapidly evolving situation. formation from CDC: <u>https://www.coronavirus.gov</u> . from NIH: <u>https://www.nih.gov/coronavirus</u> . e, and clinical content: <u>https://www.ncbi.nlm.nih.gov/sars-cov-2</u>	<u>/</u> .	
Send to: 🗸	Filters: Manage Filters	
ntical Protein Groups database.	Results by taxon	
chius furzeri]	 Top Organisms [Tree] Tetraodon nigroviridis (3) Nothobranchius pienaari (2) Nothobranchius furzeri (2) Nothobranchius kuhntae (1) Nothobranchius rachovii (1) All other taxa (6) More 	
<u>chius kuhntae]</u>	Analyze these sequences Run BLAST	
	Align sequences with COBALT	
	Identify Conserved Domains with CD-Search	1
<u>chius rachovii</u>]	Find related data Database: Select ♀	

LET'S RUN BLAST

Help

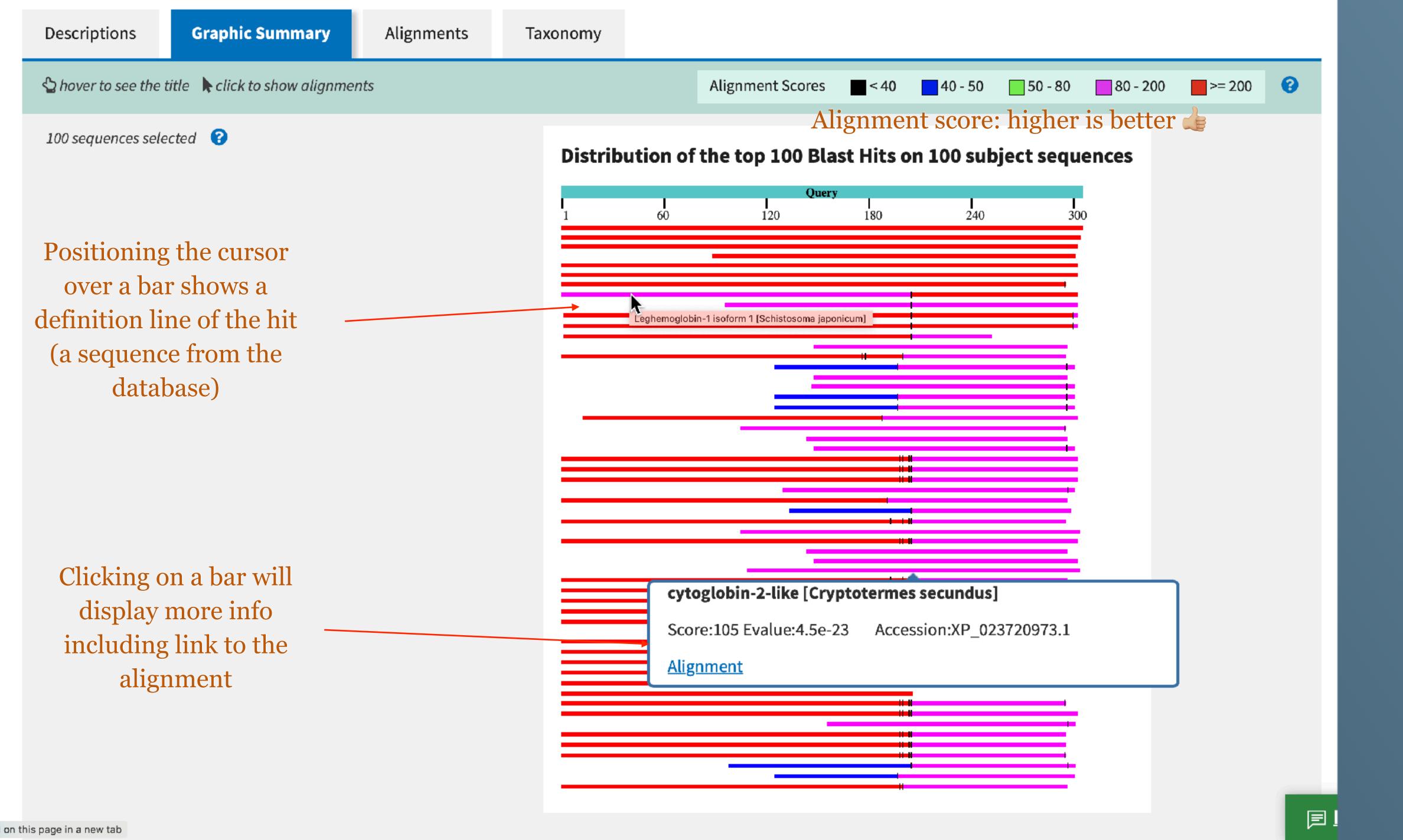
Search

 \odot

Send to: -	Filters: Manage Filters
ntical Protein Groups database.	Results by taxon Top Organisms [Tree]
chius furzeri]	Tetraodon nigroviridis (3) Nothobranchius pienaari (2) Nothobranchius furzeri (2) Nothobranchius kuhntae (1) Nothobranchius rachovii (1) All other taxa (6) More
chius kuhntae]	Analyze these sequences Analyze these sequences Run BLAST Align sequences with COBALT
chius rachovii]	Identify Conserved Domains with CD-Search
	Find related data Database: Select

BLAST [®] » blast	p suite	Home Recent Results Saved Strategies Help
	Standard Protein B	LAST
blastn blastp blastx	tblastn tblastx	
Enter Query Se	equence	using a protein query. <u>more</u> <u>Reset page</u> <u>Bookmark</u>
Enter accession nu	Imber(s), gi(s), or FASTA sequence(s) 😡 <u>Clear</u> Query subra	ange 🎯
THD28802.1 SBP57577.1 SBR04581.1 SBR92617.1 SBQ48984.1	List of proteins from our search	We are beta testing a New Results page Click here if you would like to see your
Or, upload file Job Title	Choose File no file selected	results in the new format. You can always switch back to the Traditional Results
Align two or more	Enter a descriptive title for your BLAST search 🕢	page.
Choose Search	Set	
Database	Non-redundant protein sequences (nr)	Detekses skaiss and negulta
Organism Optional	Enter organism name or idcompletions will be suggested exclude + Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. (2)	Database choice and results limitation options
Exclude Optional	Models (XM/XP) Non-redundant RefSeq proteins (WP) Uncultured/environmenta	al sample sequences
Program Select	tion	
Algorithm	Quick BLASTP (Accelerated protein-protein BLAST)	
	 Isolation (riccelerated protein protein b2.101) Isolation (riccelerated protein b2.101) 	Different types
	OPSI-BLAST (Position-Specific Iterated BLAST)	
	O PHI-BLAST (Pattern Hit Initiated BLAST)	(algorithms) of BLAST
	DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST)	
	Choose a BLAST algorithm (2)	
BLAST	Search database nr using Blastp (protein-protein BLAST) Show results in a new window	Klick here to start BLAST

BLAST RESULTS


BLAST[®] » blastp suite » results for RID-J1D9YG74015

< Edit Search	Save Search Search Summary 🛩	မှု How to read this report? 🗈 BLAST Help Videos ာ်Back to Traditional Results Page BETA ၇
Job Title	gb THD28802.1	Filter Results
RID	J1D9YG74015 Search expires on 07-07 22:50 pm Download A	
Results for	1:gb THD28802.1 Globin X [Fasciola hepatica](306aa)	Organism only top 20 will appear FILLER TESUITS exclude
Program	BLASTP ? <u>Citation</u> ~	Type common name, binomial, taxid or group name
Database	nr <u>See details</u> ✓ Select query	Add organism
Query ID	THD28802.1	Percent Identity E value
Description	Globin X [Fasciola hepatica]	to to
Molecule type	amino acid	
Query Length	306	Filter Reset
Other reports	Distance tree of results Multiple alignment 😮	
Descriptions	Graphic Summary Alignments Taxonomy	
Sequences	producing significant alignments	Download \vee Manage Columns \vee Show 100 ✔ 🕝
🗹 select all	100 sequences selected	GenPept Graphics Distance tree of results Multiple alignment
	Description	MaxTotalQueryEPer.AccessionScoreScoreCovervalueIdentAccession
	Type of results	635 635 100% 0.0 100.00% <u>THD28802.1</u>
Globin X [F	Fasciola gigantica]	614 614 99% 0.0 97.05% <u>TPP63302.1</u>

	Н	ome Recent Results	Saved Strategies Help
How to read this report?	BLAST Help Videos	Back to Traditional	Results Page BETA ⑦
Filter Resu	lts		
Organism	only top 20 will appear	Filter resu	llts exclude
Type com	mon name, binomial, tax	kid or group name	
+ Add org	<u>anism</u>		
Percent Ide	entity	E value	
	to		to
			Filter Reset

Descri	iptions	Graphic Summary	Alignments	Taxonomy								
Sequ	ences pro	oducing significant a	alignments			Download	~ N	lanag	e Colui	mns ~	Show	100 🗸 🕜
🗹 se	elect all 10	0 sequences selected				<u>GenPept</u>	<u>Graphic</u>	<u>s Di</u>	stance (tree of I	results M	ultiple alignmen
			Dese	cription			Max Score		Query Cover		Per. Ident	Accession
_		ciola hepatica] ciola gigantica]	efinition fro	m the sourc	e database		635 614	635 614	100% 99%	0.0 0.0	100.00% 97.05%	<u>THD28802.1</u> <u>TPP63302.1</u>
_		orotein CRM22_002376 [Opisite in product [Echinostoma capitation]	_				304 297	304 297	85% 69%	1e-99 3e-98	56.49% 68.20%	<u>TGZ71927.1</u> <u>VDP67930.1</u>
_		orotein T265_04650 [Opisthor	-				300 298	300 298	93% 87%	7e-98 2e-97	52.08% 54.78%	<u>XP_009167705.1</u> RJW73736.1
🗹 g	globin [Opisth	orchis viverrini]					295 218	295 218	92%	3e-96	52.1 1%	<u>OON21854.1</u>
_		in-1 isoform 1 [Schistosoma j 35 protein [Schistosoma japor		Selec	et number of resu	lts	204	204	58%	2e-65 1e-61	50.00%	<u>TNN15233.1</u> <u>AAW24922.1</u>
_		<u>tein product [Schistosoma ma</u> ed protein DC041_0005585 [War	to see. ning: if you want	to	205 201	205 201		3e-60 9e-59		<u>VDP16629.1</u> RTG83182.1
_		tein product [Schistosoma ma			ore than 100 resu need to specify it o	•	168 115	168 115	61% 48%	1e-46 3e-27	43.08% 35.81%	<u>VDP64096.1</u> <u>XP_013084131</u>
_		cytoglobin-1-like [Callorhinch	_	the	first screen unde	er	112 111	112 111		4e-26 4e-26		<u>XP_007891388</u> <u>XP_005952972</u>
	PREDICTED:	neuroglobin-like [Gekko japo	onicus]	"Algo	orithm parameter	rs"	112 110	112 110				<u>XP_015274271</u> XP_019201382
P	PREDICTED:	soform X2 [Oreochromis niloti neuroglobin-like [Neolampro]	logus brichardi]				110	110	48%	2e-25	37.33%	<u>XP_006793470</u>
_		neuroglobin-like isoform X2 [ke isoform X1 [Erpetoichthys					110 110	110 110		2e-25 3e-25		<u>XP_005754405</u> <u>XP_028653231</u>
S	GbX2 [Callorh	ninchus milii]					108	108	45%	3e-24	36.69%	<u>AKU74647.1</u>

BLAST RESULTS: ALIGNMENTS

🛓 Download 🗸 GenPept Graphics

hypothetical protein CRM22_002376 [Opisthorchis felineus]

Sequence ID: TGZ71927.1 < Length: 303 Number of Matches: 1

Range	1:	45	to	299	GenPept	Graphics
naliye	1.5	40	w	233		alter and the second

Range 1: 45 to 2	299 GenPept Graphics Arevious Match	
Score 304 bits(779)	ExpectMethodIdentitiesPositivesGaps1e-99Compositional matrix adjust.148/262(56%)190/262(72%)7/262(2%)	
Query 39	IEPDKETEEDNTSLSPDPNLQVQGNKILISIRKRMRRFLGAPTESSVLHKSMQDLSLDSA 98	
Sbjct 45	I PD	
Query 99	GYEARKSSSTGNGMQNIASKMTRDSYITNDVPDDIQSIKREYEKALITLTSLSDGEIRAV 158 RK+S T N K +D IT VP+D++S K Y AL+ L SL+D ++ V	
Sbjct 100		
Query 159	RTSWMMLKTHIEKIGVIVFLGLFEEHSDFRDAFARFRGKQLMEITRDPALQAHGLRVLNI 218 ++SWM+LK HIEKIGVIVFLGLFEEHSDFRDAFARFR KQL +TRDPA QAHGLRVLN+	
Sbjct 158		
Query 219	VDKLVSRLQKVETIQDFILSLGCRHCKYVPSIKLIPCVGEQLLEAFHPVLEEQGVWTKDT 278 VDK++SRL +++TIQDF+LSLG +HC+YVP+I+L+P VGEQLLEA PVLEEQG+W DT	
Sbjct 218		
Query 279	ETGWTILLDFLTKAMRYGLART 300 GW +L +L AMRYGL R+	
Sbjct 278		

Clicking on Sequence ID will get you to the original record

▼ <u>Next</u> ▲ <u>Previous</u> <<<u>Descriptions</u>

A little bit of alignment statistics

> The middle line shows matches and mismatches. The mismatches with a positive score are shown as "+" and mismatches with the negative scores are shown as blanks.

BLAST RESULTS: TAXONOMY

Descriptions	Graphic	Sum	mary	Al	ignments	Taxonomy
Report	Lineage	Or	ganism	Та	xonomy	\mathbf{D} \leftarrow
100 sequences s	elected 😮					
Org	janism		Blast Na	me	Score	Number of Hits
Bilateria	4		animals			122
- <u>Digenea</u>			<u>flatworms</u>			<u>16</u>
- Echinoston	natoidea		<u>flatworms</u>			<u>3</u>
<u>Fasciola</u>	Fasciola		flatworms			<u>2</u>
Fascio	Fasciola hepatica		flatworms		635	<u>1</u>
Fascio	Fasciola gigantica		flatworms		614	1
Echinostoma caproni			<u>flatworms</u>		297	1
Opisthorch	is felineus		<u>flatworms</u>		304	1
Opisthorch	is viverrini		flatworms		300	<u>3</u>
Clonorchis	sinensis		flatworms		298	2
 Schistosoma japonicum 		flatworms		218	2	
. Schistosoma margrebowiei		<u>flatworms</u>		205	1	
 Schistosoma bovis 		flatworms		201	1	
Schistosoma mattheei		flatworms		168	1	
Schistosoma mansoni		flatworms		103	<u>2</u>	
Biomphalaria glabrata		g <u>astropods</u>		115	1	
- Callorhinchus			<u>chimaeras</u>		112	<u>3</u>

Different levels of taxonomy

Description Clicking on organism name will take you to NCBI taxonomy browser

Fasciola hepatica hits Fasciola gigantica hits Echinostoma caproni hits Opisthorchis felineus hits Opisthorchis viverrini hits Clonorchis sinensis hits Schistosoma japonicum hits Schistosoma margrebowiei hits Schistosoma bovis hits Schistosoma mattheei hits Schistosoma mansoni hits Biomphalaria glabrata hits Callorhinchus milii hits

Clicking here will take you to the list of hits sorted by taxonomy

BLAST RESULTS: TAXONOMY

Description	s Grapł	nic Summary	Alignments	Taxonomy		
Reports	Lineage	Organism	Taxonomy			
100 sequences selected 😮						

Taxonomy	Number of hits	Number of Organisms	Description
⊟ <u>Teleostei</u>	<u>116</u>	94	
. ⊟ <u>Clupeocephala</u>	<u>115</u>	93	
■ Euteleosteomorpha	<u>100</u>	82	
⊟ <u>Acanthomorphata</u>	<u>85</u>	72	
Euacanthomorphacea	<u>84</u>	71	
	<u>83</u>	70	
⊟ <u>Ovalentaria</u>	<u>32</u>	29	
••••••••••••••••••••••••••••••••••••••	<u>18</u>	15	
	<u>14</u>	12	
	<u>5</u>	3	
• • • • • • • • • • • <u>Nothobranchius furzeri</u>	<u>2</u>	1	Nothobranchius furzeri hits
	<u>3</u>	2	
<u>Kryptolebias marmoratus</u>	<u>2</u>	1	Kryptolebias marmoratus hits
<u>Austrofundulus limnaeus</u>	<u>1</u>	1	Austrofundulus limnaeus hits
	<u>9</u>	9	
••••••••••••••••••••••••••••••••••••••	<u>7</u>	7	
<u>Gambusia affinis</u>	<u>1</u>	1	Gambusia affinis hits
••••••••••••••••••••••••••••••••••••••	<u>4</u>	4	
••••••••••••••••••••••••••••••••••••••	<u>1</u>	1	Poecilia latipinna hits
••••••••••••••••••••••••••••••••••••••	<u>1</u>	1	Poecilia formosa hits

TONS OF MATERIALS TO LEARN FROM 😥

Learn

NCBI creates a variety of educational products including courses, workshops, webinars, training materials and documentation. NCBI educational events are free and open to everyone. All NCBI educational materials are available for anyone to re-use and distribute.

Webinars & Courses

In-person courses, live webinars and webinar recordings

Conferences & Presentations

Booth exhibits and workshops at scientific conferences

Tutorials

Tutorials: Training materials in HTML, PDF and video formats

Documentation

Online manuals, handbooks, fact sheets and FAQs

Follow Us

NCBI News & Blog

New human genome annotation release with MANE Select and other improvements!

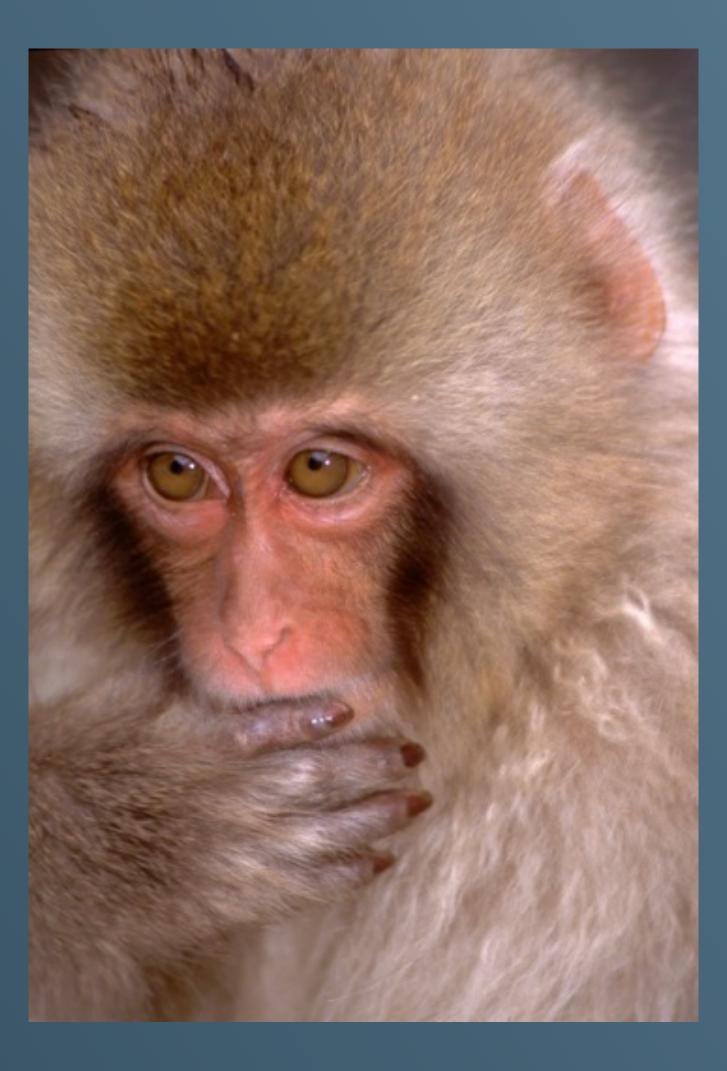
03 Jul 2019

There's a new RefSeq annotation available for the human genome, and it's quite an update! About the release Annotation release 109.20190607 is the first release of our new

Microbial Virulence in the Cloud hackathon August 13 – 15 2019

02 Jul 2019

From August 13 – 15 2019, the NCBI will run a bioinformatics hackathon on the NIH campus! We're specifically looking for folks who have experience in working with computational


GenBank release 232

01 Jul 2019

GenBank release 232.0 (6/20/2019) is now

BIOINFORMATICS CREED

Remember about biology Do not trust the data Use comparative approach Use statistics Know the limits Remember about biology!!!

