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Abstract
A whole chromosome arm loss of 16q belongs to the most frequent and earliest chromosomal alterations in
invasive and in situ breast cancers of all common subtypes. Besides E-cadherin, several putative tumour suppressor
genes residing on 16q in breast cancer have been investigated. However, the significance of these findings has
remained unclear. Thus, other mechanisms leading to gene loss of function (eg haploinsufficiency, or distortion
of multiple regulative subnetworks) remain to be tested as a hypothesis. To define the effect on gene expression
of whole-arm loss of chromosome 16q in invasive breast cancer, we performed global gene expression analysis
on a series of 18 genetically extensively characterized invasive ductal breast carcinomas and verified the results
by quantitative real-time PCR (qRT–PCR). The distribution of the differential genes across the genome and their
expression status was studied. A second approach by qRT–PCR in an independent series of 30 breast carcinomas
helped to narrow down the observed effect. Whole-arm chromosome 16q losses, irrespective of other chromosomal
changes, are associated with decreased expression of a number of candidate genes located on 16q (eg CDA08,
CGI-128, SNTB2, NQO1, SF3B3, KIAA0174, ATBF1, GABARAPL2, KARS, GCSH, MBTPS1 and ZDHHC7) in breast
carcinomas with a low degree of genetic instability. qRT–PCR provided evidence to suggest that the expression of
these genes was reduced in a gene dosage-dependent manner. The differential expression of the candidate genes
according to the chromosomal 16q-status vanished in genetically advanced breast cancer cases and changed ER
status. These results corroborate previous reports about the importance of whole-arm loss of chromosome 16q in
breast carcinogenesis and give evidence for the first time that haploinsufficiency, in the sense of a gene dosage
effect, might be an important contributing factor in the early steps of breast carcinogenesis.
Copyright  2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
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Introduction

Physical losses of the whole arm of 16q belong to
the most frequent and earliest findings in in situ and
invasive breast cancer cases of the ductal and lobu-
lar subtypes [1]. Loss of chromosome 16q has been
repeatedly associated with favourable clinical features,
indicating a good prognosis in invasive breast can-
cer [2–7]. Based on the distribution of chromosome
16q losses within breast cancers cases of varying
tumour grade, breast cancer models with multiple par-
allel pathways have been proposed [8–11]. Whereas

well-differentiated breast cancer cases displayed whole
16q losses in a frequency of >60% by comparative
genomic hybridization (CGH), this was a rather rare
finding overall in poorly-differentiated breast cancers.
These differences, however, could not be shown by
means of microsatellite analysis with similar frequen-
cies of loss of heterozygosity (LOH) in breast cancers
of all histological grades [12].

It has become apparent that the underlying mecha-
nisms of 16q LOH differed substantially in well and
poorly-differentiated breast cancers. Physical losses of
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the whole arm of 16q were the predominant mecha-
nisms in well-differentiated breast cancers. In contrast,
16q losses in poorly-differentiated breast cancer were
accompanied by mitotic recombination [13]. In con-
clusion, the results allowed the postulation of multiple
tumour suppressor genes which might be the target of
LOH at chromosome arm 16q. However, the recent
research of putative tumour suppressor genes in the
sense of the Knudson two-hit model on 16q have
not taken into account these findings and was rather
focused on tumour suppressor genes in poorly differ-
entiated breast cancers [14–17]. Tumour suppressor
genes residing on 16q might therefore differ in well
and poorly differentiated breast cancers. We therefore
hypothesized that a gene dosage effect as a conse-
quence of the loss of the whole 16q arm may contribute
to differential gene expression of a constellation of
genes through haploinsufficiency.

Based on our previous results, we performed an
integrative analysis of high-throughput microarray-
based CGH and global gene expression profiling of
18 invasive breast cancer cases. The results were ver-
ified in a second, independent cohort of 30 addi-
tional breast cancers, using quantitative real-time PCR
(qRT–PCR).

Materials and methods

Ethics
Data were analysed anonymously. Nonetheless, we
have performed according to the principles expressed
in the Declaration of Helsinki. The study was approved
by the Institutional Review Board of the University of

Münster. We have acquired tissue samples only with
the informed consent of the patients or patients’ next
of kin, with the understanding by all parties that it
may well be used for research. All patients provided
written informed consent for the collection of samples
and subsequent analysis.

CGH and array CGH

Based on our hypothesis, we have chosen a series
of 18 ductal invasive breast carcinomas out of a
series of 144 breast cancer cases previously described
[18]. To reduce the influence of putative secondary
cytogenetic changes other than 16q losses, we have
predominantly chosen invasive breast carcinomas with
a low number of cytogenetic alterations. All tumours
were ER-positive (ER+) breast cancers with a low
to medium degree of cytogenetic instability. Further
details are shown in Table 1.

All cases were fully characterized by means of CGH
and array CGH, using DNA from fresh frozen tumour
samples. Array CGH was performed with the 32 K
BAC re-array collection (CHORI) tiling path aCGH
platform, which was constructed at the Breakthrough
Breast Cancer Research Centre, as described previously
[19]. This type of BAC array platform has been shown
to be as robust as, and to have comparable resolution
to, high-density oligonucleotide arrays [20–22]. DNA
labelling, array hybridizations and image acquisition
were performed as previously described [23]. aCGH
data were preprocessed and analysed using R script
(version 2.9.0; http://www.r-project.org/), as previously
described [24,25]. After filtering polymorphic BACs,
a final dataset with unambiguous mapping informa-
tion according to the build hg19 of the human genome

Table 1A. Overview of the basic set of ductal invasive grade 1–3 carcinomas used for the primary analysis
ydiolPforebmuNesaC

no. c1 c2 Grade ER PR alterations T-status N-status status Cytogenetic alteration status

2468 2 + + 5 1 1 di 1q+ , 7q+ , + 8, 16q− , −21
2517 2 + + 2 1 0 tetra 1q+ , 16q−

2704 2 + + 3 2 0 an 1q+ , + 8, 16q−

3011 2 + + 5 1 0 di 2q+ , 4q+ , 9q− , 16q− , 17p−

2974 1 + + 2 1 0 NA 1q+ , 16q−

2978 1 + − 4 1 0 NA 1q+ , 16q− , − 17, − 21
181 2 + + 7 2 1 an 1q+ , 8p− , 14q+ , 15q− , 16q− , 17q+ , − 22
2979 2 + + 6 1 0 di − 6, 8p− , 8q+ , 13q− , 16q− , − 21
3040 2 + + 9 4 1 di 1q+ , 3q− , 5p+ , 9p− , 16q− , 17q+ , 18q− , 20q+ , − 22
185 2 + − 5 2 2 di 1q+ , 17q+ , 18q− , 20q+ , − 22
2472 2 + + 2 2 0 di 8p− , 8q+

2700 2 + + 4 1 0 di 6q− , 11q+ , + 12, − 22
3050 2 + + 4 2 1 NA 7q− , 8q+ , 17p− , − 22
184 3 + − 5 2 0 an 1q+ , 3q+ , 6p+ , 8q+ , 10q−

2516 3 + + 6 4 2 an 1q+ , + 6, + 7, 9q− , − 11 , 20q+

2528 3 + − 2 2 2 di 1q+ , 8q+

2529 3 + − 2 1 0 di 1q+ , 6q−

3041 3 + − 1 2 2 an 9q+

Columns 2 and 3 give an overview of the selections used for the differential gene expression analysis of 16q minus versus 16q normal cases: c1, a selection of grade
2 cases with a low number of alterations; c2, the second differential gene expression analysis is based on a mixed grouping comprising cases with both a low and a
higher number of alterations. Clinical parameters of the cases and the cytogenetic alteration status are described in the following columns. Ploidy status: di, diploid;
an, aneuploid; tetra, tetraploid; NA, not available. Detailed information on these cases has already been published [18]. Black shading, 16q− cases; grey shading, 16q
normal cases.
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Table 1B. Overview of the ductal invasive grade 1–3 carcinomas used to study the impact of cases with a high number of alterations and
ER-negative status on the outcome of the 16q–effect

ydiolPforebmuNesaC
no. c3 Grade ER PR alterations T-status N-status status Cytogenetic alteration status

1921 3 + + 14 2 1 NA 4p , 4q+ , 7p+ , 8p− , 8q+ , 11q− , 11q13+ , 13q− , 15q+ , 16q− ,
17q+ , 20q+ , − 22, Xq+

2048 2 + + 11 1 2 NA 1q+ , + 2, + 3, + 5, 9p− , 11q− , 11q13+ , 13q− , 16q− , 17q+ , 18q−

2053 2 + + 2 2 1 NA 1q+ , 16q−

2066 2 + + 3 4 0 NA 1q+ , + 5, 16q−

2068 2 + + 5 4 x NA 1q+ , 8p− , 8q+ , 15q− , 16q−

2071 1 + + 4 1 1 NA 1q+ , 7p+ , 7q− , 16q−

2072 1 + + 3 1 1 NA 12q+ , 12q− , 16q−

2519 3 + + 9 1 0 an 1q+ , 5q− , 7p+ , 8q+ , 9q− , 11q− , + 11q13 , 15q− , 16q−

2523 3 + + 15 2 1 NA 1q+ , 2q− , 3p− , + 4, + 5, + 6, 8p− , 8q+ , − 9, 11q− , + 12, 13q− ,
16q− , 17p− , 17q+

2698 2 + + 9 1 0 NA 1q+ , + 5, + 8, 11q− , 16q− , 17p− , + 18, 20q+ , − 22
2703 2 + + 12 2 0 an 1q+ , + 5, − 6, − 7, 9q− , 11p+ , 11q− , 13q+ , 15q+ , 16q− , 20q,

− 22
2973 2 + + 16 1 0 an 1q+ , 3p− , + 4, + 5, − 6, 7p+ , 8p− , 8q+ , 9q− , − 11 , 13q− , 15q− ,

16q− , 17p− , 17q+ , + 18
3015 2 + + 4 4 1 NA 1q+ , 7p− , 8p− , 16q−

3017 2 + + 9 2 0 NA 1q+ , 3p− , 3q+ , 8p− , 9p− , − 12, 16q− , − 17, − 22
3036 3 + + 25 1 1 an 2q+ , + 3, 4q− , 5p+ , 5q− , + 7, 8p− , 8q+ , − 9, + 10, 11q− , + 12,

13q− , 14q+ , 14q− , 15q− , 16q− , 17p− , 17q+ , 18q+ , 19q+ , 20q+ ,
+ 21, − 22, Xq−

3042 3 + + 10 4 2 NA 1q+ , 3p− , 3q+ , 6p− , 6q+ , 6q− , 16q− , 17p− , 17q+ , − 22
1915 3 − − 1 3 1 NA 1q+

2467 2 − − 8 3 2 an 1q+ , 2q− , 7p+ , 7q− , 9q− , 10q+ , 17p− , 17q+

2471 2 − − 4 1 1 NA 1q+ , + 3, 6q , − 21
2473 2 + + 5 2 1 di 1q+ , 8p− , + 11q13 , 13q− , 20q+

2511 3 − − 12 2 0 di 1q+ , 4p− , 5p+ , 5q− , 6q+ , 8p− , 8q+ , 10q , 13q , 17q+ , 18q ,
Xq+

2521 2 − − 11 2 1 an 1q+ , + 5, 8q+ , 11q− , + 11q13 , 13q− , 14q− , 15q− , 18q− , 20q+ ,
− 22

2526 3 − − 12 4 2 di 1q+ , 2q− , 3q+ , 6q− , 7q− , 8p− , 8q+ , 134q− , 14q− , 17q+ , 20q+ ,
Xq−

2697 3 − − 15 2 0 tetra 1q+ , 2p− , + 3, − 4, − 5, 6p+ , 6q , 8q+ , 9p+ , 10p+ , 13q+ , 15q− ,
− 17, + 18, − 22

2968 3 − − 11 1 0 an 1q+ , 2p+ , 3q+ , 5p+ , + 6, 7q+ , 8p− , 9p+ , 13q− , 20q+ , Xq−

2969 3 − − 2 2 0 di 8p− , 8q+

2980 2 − − 14 2 1 an 1q+ , 3p− , 5p+ , 5q− , 6q+ , + 7, 11p− , 12p+ , 13q+ , 14q− , 15q− ,
17p− , 18q− , Xq+

3038 3 + + 15 1 0 an 1q+ , 2p+ , 4q− , 5p+ , 6q+ , 7p+ , 8p− , 8q+ , 9p+ , 13q+ , 13q− ,
14q+ , 15q− , 20q+ , − 22

3041 3 − − 1 2 2 an 8q+

3044 3 − − 24 4 1 an 1q+ , 2p+ , 2q− , 3p− , 3q+ , − 4, 5p+ , 5q− , + 6, 7p− , 7q+ , 8q+ , + 9,
10p+ , 10q− , 10q+ , − 11 , + 11q13 , 12p+ , 12q− , 13q− , 14q− ,
18q− , Xq−

Column 2 gives an overview of the selection used for the qRT–PCR study (c3). Clinical parameters of the cases and the cytogenetic alteration status are described in
the following columns. Ploidy status: di, diploid; an, aneuploid; tetra, tetraploid; NA, not available. Black shading, 16q− cases; grey shading, 16q normal cases.

(http://www.ensembl.org) was smoothed using the cir-
cular binary segmentation (cbs) algorithm [26]. A cat-
egorical analysis was applied to the BACs after classi-
fying them as representing amplification (>0.40), gain
(>0.08 and ≤0.4), loss (≤0.08) or no change, accord-
ing to their cbs-smoothed log2 ratio values. Threshold
values were determined and validated as previously
described [11,27]. The DNA ploidy status was avail-
able for 15 cases. The thresholds in conventional CGH
for the definition of losses and gains are described else-
where [11,27–31]. For the definition of whole chromo-
some arm losses within array CGH, at least 75% of all
probes mapping in the 16q region had to be a smoothed
signal ratio ≤0.08.

Microarray-based gene expression profiling

RNA was isolated from fresh frozen tumour mate-
rial (tumour sections), using the ABI PRISM 6100
Nucleic Acid PrepStation in combination with the Tis-
sue RNA Isolation System (both Applied Biosystems,
Foster City, CA, USA), as previously described [32].
The tumour sections contained at least 70% of tumour
cells. Two to five (depending on the tumour size)
10 µm sections were lysed in nucleic acid purifica-
tion lysis solution and digested with 10 U proteinase
K (both part of the Tissue RNA Isolation System)
per ml lysis buffer for 1–2 h at room temperature.
Purification of RNA from the lysate was done accord-
ing to the manufacturer’s instructions. Purified RNA
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was quantified spectrophotometrically (Biophotometer,
Eppendorf, Hamburg, Germany).

Whole-genome microarray expression analysis was
performed at GeneSys Laboratories GmbH (Münster,
Germany), using kits, reagents and the chemilu-
minescent microarray analyser 1700 from Applied
Biosystems according to the manufacturer’s proto-
cols. In brief, 2 µg high-quality total RNA was
reverse-transcribed for 2 h at 42 ◦C in a thermocy-
cler [GeneAmp 9700; Applied Biosystems (now Life
Technologies Corp.), Carlsbad, CA, USA], using a
T7-oligo (d)T primer and the reverse transcription
in vitro transcription (RT–IVT) labelling kit. Synthe-
sis of the second strand was performed at 16 ◦C for
2 h and cDNA was purified using the RT–IVT purifi-
cation components. During IVT labelling for 9 h at
37 ◦C, digoxigenin-labelled UTP (Roche Diagnostics,
Mannheim, Germany) was incorporated into the cRNA.
cRNA was purified using the RT–IVT purification
components and the quantity was assessed by mea-
suring the absorbance at 260 and 320 nm. Labelled
cRNA (10 µg) was fragmented for 30 min at 60 ◦C in
fragmentation buffer and subsequent addition of frag-
mentation stop buffer was used to end the reaction.

Human Genome Survey Microarrays (Applied
Biosystems) were prehybridized at 55 ◦C for 1 h
(hybridization oven Minitron; Infors AG, Einsbach,
Germany). Fragmented labelled cRNA was added
to the hybridization mixture and rapidly transferred
into each microarray cartridge. During hybridization
for 16 h at 55 ◦C, the microarrays were agitated at
100 rpm.

After hybridization, the microarrays were removed
from the cartridge and hybridization washes were
carried out in a wash tray on a rocking platform
shaker (VWR Rocking Platform Shaker, Darmstadt,
Germany) in wash buffer 1 for 5 min, wash buffer
2 for 5 min, and twice in chemiluminescent rinse
buffer for 5 min. Binding of anti-digoxigenin-AP,
Fab fragments (Roche Diagnostics GmbH, Mannheim,
Germany) was performed for 20 min on a rocking
platform shaker. Remaining antibody was washed away
with three washes of chemiluminescent rinse buffer for
10 min each. During the chemiluminescent reaction,
the microarrays were washed with chemiluminescent
enhancing rinse buffer for 10 min and incubated with
chemiluminescent enhancing solution for 20 min. After
an additional wash in chemiluminescent enhancing
rinse buffer the chemiluminescent substrate was added
onto the microarray. Chemiluminescence was detected
using a 1700 chemiluminescent microarray analyser
(Applied Biosystems).

Relative expression quantification of differentially
expressed genes by real time qRT–PCR
Expression of 10 of the putatively differentially
expressed genes was quantified in all 18 specimens
described above and 30 further invasive breast can-
cer cases by qRT–PCR. Total RNA derived from

these tumours was reverse-transcribed using oligo-
dT18 primer in the First Strand Synthesis Kit [Amer-
sham Pharmacia Biotech (now GE Healthcare Europe
GmbH), Munich, Germany] according to the manu-
facturer’s instructions. qRT–PCR analyses were per-
formed on an ABI 7900 HT Sequence Detection Sys-
tem (Applied Biosystems) in triplicate, using the qPCR
MasterMix Plus (Eurogentec, Liege, Belgium). The
expressions of the target genes were normalized to
the reference gene PPIA (Cyclophilin A). For the ref-
erence, a Pre-Developed TaqMan Assay Control Kit
(Applied Biosystems) was used. For expression quan-
tification of the target genes we applied TaqMan Assays
on Demand (Applied Biosystems; see Supporting infor-
mation, Table S1). qRT–PCR set-up was automatically
done in a 384-well layout on a Genesis Workstation
150 (TECAN, Männedorf, Switzerland) equipped with
a low volume. The conditions for qRT–PCR were:
initial denaturation for 10 min at 95 ◦C, followed by
40 cycles, each consisting of 15 s at 95 ◦C and 1 min
at 60 ◦C, for primer annealing and extension. Relative
expression analyses were done with help of SDS 2.1
software (Applied Biosystems). The expression ratios
between the samples were calculated from differences
in threshold cycles at which an exponential increase
in reporter fluorescence could first be detected (Ct val-
ues). Further data analyses was also performed with
SDS 2.1 software, using fold change = 2−��Ct [33].

Statistical analysis of microarray data
Applied Biosystems 1700 AB-Navigator Software Ver-
sion 1.0.0.3 was used to correct the measured raw
signal values in relation to background and intra-array
shifts (default parameters recommended by Applied
Biosystems). These values were exported from the
Applied Biosystems software and imported into the
statistics software package S-Plus 6.2 (TIBCO Soft-
ware, Palo Alto, CA, USA). In this environment, all
the different experiments were scaled to the same
interquartile range and median [34].

The significant gene expression differences between
the defined experimental groups were evaluated using
a Shapiro–Wilk test (test on Normal distribution in
both groups; α > 0.05: Normal distribution, provided
as a quality parameter), a variance test (α > 0.1:
no difference in the variance), and depending on
that a t-test or the Welch variant of a t-test (two-
sample, two-sided, αc1 < 0.05/αc2 < 0.01: assumed to
be different). The additional filter criteria to call a gene
‘differentially expressed’ are a fold change value >1.5
and a difference of the group means >10. The stability
of the candidates was additionally tested by a sampling
procedure [35]. The applied variant is similar to the
proven significance analysis of microarrays approach,
which controls the false discovery rate [36].

To determine whether the proportions of the found
differentially expressed 16q genes in conjunction with
their found differentially expressed non-16q genes
differed significantly from the proportions of the total
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number of 16q genes and the total number of non-16q
genes, respectively, we applied a χ2 test (Pearson).
Note that the normal fold-change scale ranges from
0 to ∝. The range 0–1 (decrease) corresponds to
1–∝ (increase). So our positive fold change values
(increase) are directly taken from that scale, while the
negative fold change values (decrease) are calculated
by ‘1/fold change’ to ease the comparability. This
applies accordingly to all fold-change values in the text
(± fold change values outside the parentheses and 0–∝
values in parentheses).

Visualization of the results of the differential gene
expression analysis
To visualize the results of chromosome arm-specific
gene expression analysis, we applied a function which
maps the group of differentially expressed genes to
their genomic location. The S-Plus (TIBCO Software,
Palo Alto, CA, USA)-based function was written by the
last author and is available on request. The genome is
displayed as a panel of ordered metaphase ideograms
of the human chromosomes 1–22 and X. The scaling

along the chromosomes is linear, going from the
physical position 0 at the top of the ideogram to the
maximum length of the chromosomal sequence at the
bottom. Each of the target genes is placed at its physical
position on the respective chromosome, denoted by
a tick mark and the gene identification code. This
representation does not reflect the complex structure
present in the genome and therefore may hide some
special neighbourhood effects. Nevertheless, using this
layout the overall distribution of the differentially
expressed genes across the genome can be studied.

Results

CGH and array CGH
Genetic tumour characteristics defined by conventional,
chromosome-based CGH of all 18 tumours of the
first cohort are listed in Table 1A (column headed
‘Cytogenetic alteration status’). Further analysis by
array CGH revealed the genetic alterations shown in
Figure 1A for 16q− and Figure 1B for 16q normal
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Figure 1. Genomic array CGH profiles. The two panels show median profiles of ductal invasive carcinomas with 16q loss (16q−) and 16q
normal state, respectively, from the first cohort (cf Table 1A). The y axis denotes log2 values generated by the circular binary segmentation
(CBS) algorithm. The x axis shows genomic positions and chromosomes in ascending order. Copy number gains or losses, respectively,
are denoted by a horizontal line (cut-off ratio >0.08 or ≤0.08; see Materials and methods). (A) Ductal invasive carcinomas holding a
16q loss. These cases harbour on average 4.8 genomic alterations. (B) Ductal invasive carcinomas with a 16q normal state. This group
is characterized by on average 3.4 alterations. It can be clearly seen that both selections differ very distinctly at chromosome 16, more
pronounced in the q arm (denoted by two black boxes at chromosome 16).
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cases. Using the previously defined definition of whole
chromosome arm losses [37], all breast cancer cases
showing a loss of 16q in conventional CGH revealed
an identical loss of 16q in array CGH. Identical results
could be shown for all tumours with a normal 16q
status in both techniques. Therefore, the definition of
whole arm 16q losses was independent of the chosen
method. In the following sections, loss of 16q always
indicates the loss of the whole 16q arm, verified by
both methods.

Microarray-based gene expression profiling
The analysis of the differential gene expression in
relation to the chromosomal 16q status was performed
to support the assumed asymmetric distribution of
gene expression changes across the human genome by
16q alterations. To screen for systematic trends two
different approaches differing in 16q status and tumour
grade were analysed.

In a first step we compared four ductal invasive grade
2 carcinomas with a chromosomal 16q loss against four
ductal invasive grade 2 carcinomas with normal 16q
status concerning their panel of differentially expressed
genes. All carcinomas displayed five or less genetic
alterations per case by means of CGH. Both groups
harboured 3.8 alterations/case on average.

An overview of all 86 differentially expressed genes
in relation to their chromosomal location is shown
in Figure 2A. Twelve differentially expressed genes
were located on 16q (CDA08, CGI-128, SNTB2, NQO1,
SF3B3, KIAA0174, ATBF1, GABARAPL2, KARS,
GCSH, MBTPS1 and ZDHHC7 ). All these genes dis-
played a decreased expression level in tumours with
16q loss. In contrast, 26 further differentially expressed
genes located on 1q were up-regulated in tumours with
16q losses.

In a second step, we compared all 18 ductal inva-
sive breast cancer cases of all grades with regard
to their 16q status. The average number of chro-
mosomal alterations/case in all tumours was 4.1.
Nine tumours with 16q loss displayed, on average,
4.8 genetic alterations/case. The average number of
genetic alterations per case with normal 16q status was
3.4. Seventy-eight genes were differentially expressed
(Figure 2B). Twenty-three of these genes were located
on 16q. Again, all genes exhibited a reduced expres-
sion in tumours with 16q loss. Only one differentially
expressed gene was located on 1q, which means that
the 1q effect of the first differential approach was com-
pletely diluted by the added cases. The 16q effect, in
contrast, remained stable.

A detailed overview of all differentially expressed
genes located on 16q in the two approaches is given
in the Supporting information (Table S2). This table
also includes intersections concerning 1q and further
genomic locations. Eight genes located on 16q were
differentially expressed in both comparisons (grey-
shaded genes in Table 2). To test whether the distribu-
tion of the genes across the genome is not generated by

chance, we performed a χ2 test. Indeed, both result sets
differed significantly (pc1 and pc2 < 0.000001) from
the underlying distribution of all currently known genes
in the human genome. This underlines the observed
16q effect. The other differentially expressed genes
were distributed randomly over the non-16q and non-
1q chromosomal regions.

Verification of microarray results by qRT–PCR
To verify the results described above, we performed
real-time qRT–PCR for 10 candidate genes located
on 16q in all 18 ductal invasive breast cancers. The
candidate selection was taken from the intersection of
the differential analyses (SNTB2, SF3B3, MBTPS1 ),
candidates solely present in the second (c2) differential
analysis (KIAA1007, AARS, PSMD7, TERF2IP ) and
some random candidates (KIFC3, CFDP1, ANKRD11 )
of 16q. This design was chosen to thoroughly verify the
16q effect independently from the microarray results.

The respective, cumulative results of the qRT–PCR
are shown in Figure 3A. Clear, significant differences
could be observed for carcinomas with loss of 16q
in contrast to normal 16q status (Figure 3A, graph at
left). The fold change between 16q− and 16q normal is
shown in Figure 3A (graph at right). On average, a fold
change of—1.6 (0.5–0.7) was observed, indicating a
reduction of the respective gene expression of slightly
more than 50% in carcinoma with a loss of 16q.

Analysis of the impact of cases with a high number
of alterations and ER-negative status on the
outcome of the 16q effect by qRT–PCR
In a next step we analysed further 30 ductal invasive
breast cancer cases of all grades again based on their
chromosome 16q status (cf Table 1B, c3 analysis).
Additionally, nearly all tumours with a normal 16q
status showed ER-negativity, while all tumours with
a 16q normal state exhibit ER-positivity. The average
number of genetic alterations per tumour was 9.4, and
9.6 in carcinomas with and without chromosomal 16q
losses, respectively.

In Figure 3B only three of the analysed genes still
showed a decreased expression status for the tumour
group harbouring a 16q loss. Despite the second cohort
comprising a higher case number in comparison to the
first cohort, the standard deviation (SD) was increased
and therefore the results defined no significant fold
change for seven of the genes analysed. The fold
change values for both groups were within a range
of −1.6 and 1.25 (0.64–1.25). The 16q loss effect
disappeared in this cohort.

Discussion

The whole arm loss of 16q belongs to the earli-
est cytogenetic alterations in ER-positive, invasive
breast cancer and some of its precursor lesions [38].
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Figure 2. Overview of all differentially expressed genes with regard to their chromosomal location in three different comparisons. The
genome is displayed as a panel of ordered metaphase ideograms of the human chromosomes 1–22 and X. To facilitate the orientation
in these ideograms, shaded and non-shaded areas with adjacent annotations on the left side point to some prominent cytobands. The
scaling along the chromosomes is linear (physical position 0 at the top of each of the ideograms). The differentially expressed genes are
mapped to their genomic location on the right side of the ideogram and described by their gene symbol code. Up-regulated genes on 16q
and 1q are accompanied by red brackets/lines (red arrow pointing up), while green brackets/lines denote down-regulated genes (green
arrow pointing down). The purpose of using this layout is to study the overall distribution of the differentially expressed genes across the
genome. (A) The differential genes resulting from the 16q normal versus 16q− analysis with a low number of alterations [c1; cf Table 1, c1
column; average alterations 16q−/16q normal, both 3.8, average fold change (16q−: 16q normal):1q: +1.9, 16q: −1.8]. On 16q and 1q a
significant accumulation of differentially genes can be seen. (B) The cases of situation (A) complemented by cases with grade 3 and cases
harbouring slightly more alterations [c2; cf Table 1, c2 column; average alterations now 16q−/16q normal: 4.8/3.4, average fold change
(16q−: 16q normal): 1q: +1.6, 16q: −1.6]. Here the 1q effect becomes diluted, while the 16q effect remains stable. All the 16q genes
revealed a decreased expression, while 1q genes did show increased expression.
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Table 2. List of all differentially expressed genes located on 16q detected by gene chip analysis

The exact location and known or suspected functions are listed. A second acronym denotes a synonym and is added as a courtesy for the reader. Grey shading, factors
present in both differential gene expression analyses (intersection). The following blocks list genes only present in one differential analysis. NA, not available; EST,
expressed sequence tag, no functional information available. Most factors are expressed during all live phases. They show up in normal and diseased states, eg a broad
range of tumour types. They are also ubiquitously expressed in many different cell types (eg epithelial, endothelial, stem cells). To conclude, many of these genes seem
to have functions according to basic cellular regulation and maintenance. Their differential pattern therefore points towards basic changes in cellular regulation.

The postulation of multiple parallel morphological and
genetic pathways in in situ and invasive breast can-
cer is mainly based on the distribution of whole arm
16q losses in breast cancer cases of different grades
[8–10,18]. This is further furnished by the fact that
the underlying mechanisms of 16q losses differ signif-
icantly between these different breast cancer subtypes
[13]. Following this line of evidence, it is worth specu-
lating that in consequence different tumour suppressor
genes might be involved in different breast cancer evo-
lution lines. Interestingly, in recent years a number
of putative tumour suppressor genes located on chro-
mosome 16q have been described, although a definite
candidate gene could not be defined [14–17,39].

The definition of differentially expressed genes
according to the chromosomal status, especially in
relation to chromosomal losses, is a difficult task in
the early stages of breast cancer. Mostly breast can-
cer is a genetically rather far advanced disease with a
multitude of genetic alterations, including chromoso-
mal amplifications. It has been speculated that <20%
of the global gene expression within breast cancer is
a result of a gene dosage effect due to unbalanced
chromosomal alterations [40]. Various cell biological
reports have dealt with the influence of chromosome
transfers into cancer cells and its associated differen-
tial gene expression, or with candidate genes asso-
ciated with chromosomal amplifications [41]. More
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Figure 3. qRT–PCR results of (A) verification of the results of the gene expression microarray study and (B) analysis of these genes in
second 16q−/ER+ versus 16q normal mostly ER− scenario. The left-hand graphs in both panels show the ��Ct values for two groups of
interest: 16q normal and 16q− (blue/red). Both graphs show a smaller expression of the genes of interest concerning the used reference
gene. The right-hand graphs in both panels present the fold change between the 16q normal and 16q− groups. Here the dashed line by the
y axis value 1 denotes no fold change at all (cf fold change definition in Materials and methods). The 10 genes presented are selected from
the differentially expressed 16q genes of the microarray study and some random picks on 16q. (A) Verification of the microarray results
based on the c2 cases of the primary cohort (cf Table 1A, c2; on average 4.1 alterations). The left-hand graph shows that the difference
between the 16q normal and 16q− (blue/red) groups is unidirectional in all cases. The right-hand graph illustrates this decrease in gene
expression in the 16q− group (fold change on average −1.6, which is slightly more than the loss alone would imply). (B) This analysis is
based on a complete independent set of breast cancer cases (cf Table 1B) exhibiting higher alterations (on average 9.5). The comparison is
based on 16q−/ER+ and 16q normal/(mainly) ER− cases. The results show that the differences between the 16q normal and 16q− group
are much smaller (left-hand graph). Many cases show only a weak decrease (fold change on average −1.2) but some cases even show an
increase in differential expression (3/10 with a fold change on average of +1.2, right-hand graph). The SD is high and only three cases
show a significant fold change. In this study the 16q effect is nearly gone.

recent studies demonstrated that the expression of
genes located on 16q was associated with survival
and also differed in different breast cancer subgroups
[42,43]. In detail, the expression of genes located on
16q was significantly decreased in luminal A, ER-
positive tumours. In consequence, the authors postu-
lated that a stratification of breast cancer subgroups

into 16q low-expressing and high-expressing tumours
could be lead to a sharper distinction of breast cancers
with a good and a poor prognosis.

We, in contrast have chosen an approach enabling
the definition of differentially expressed genes located
on 16q as early events in breast carcinogenesis. In
a first step we have investigated ER-positive, ductal
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invasive breast carcinomas with less than five genetic
alterations, distinguished by the chromosomal 16q sta-
tus. The concentration on these tumours led to a
reduction of secondary effects of a differential expres-
sion due to other, non-16q-related events. Our results
of this approach showed indeed that chromosomal 16q
losses in invasive breast cancer are associated with a
specific differential gene expression with a significantly
high number of genes located on 16q (14/29% of all
differentially regulated genes in the c1/c2 approaches).
Interestingly, in accordance with the a priori hypothe-
sis, all these genes indeed revealed a significant down-
regulation in tumours with whole arm chromosomal
16q losses. This was further verified by qRT–PCR.

In contrast to that, the inclusion of genetically more
advanced, unstable breast cancer cases in this study
tremendously changed this image. Whereas qRT–PCR
verified the differential expression of the 16q-specific
candidate genes in genetically early breast cancer
cases (Figure 3A), indicating a loss of expression of
slightly more than approximately 50%, this could not
be reproduced in an additional series of 30 breast
cancer cases of all grades (Figure 3B). The 16q effect
vanished. Since the difference of these two cohorts
was the higher degree of genetic instability and the ER
status, the interpretation of these findings allows two
major conclusions. Based on a classical progression
model of breast cancer, 16q losses might represent first
tumour initiation events in low-grade tumours, which
effects are later diluted or substituted by secondary
progression events. Alternatively, it is also possible
to speculate that the ER expression status might have
a higher impact on gene expression than a single
chromosomal alteration.

However, the interpretation of these gets more con-
fusing in regard to the differentially expressed genes
in ER-positive breast cancers located on 1q. 16q losses
may be a result of an unbalanced chromosomal translo-
cation, t(1;16), leading to a whole-arm loss of 16q and
a whole-arm gain of 1q [2]. Alternatively, 16q losses
may appear as a simple chromosomal loss without any
further chromosomal alteration. Our presented tumour
series indicate that in genetically rather stable, ER-
positive tumours the loss of 16q is associated with a
gain of 1q, with the respective decreased or increased
expression of the respective candidate genes located on
16q and 1q. Even though this might be speculative, an
interaction between these genes can not be excluded.
However, our gene expression results indicate that the
low-grade, ER-positive pathway can be subdivided into
tumours with whole arm 16q losses, with or without 1q
gains.

The biological function of the genes found in
the differential analyses (Table 2) and their role in
breast carcinogenesis is largely unknown. One can
only speculate about the biological importance of
these genes. As far as there is additional informa-
tion available on the candidate genes, many functions

are related to cell cycle regulation, proliferation, exo-
respective endocytosis and apoptosis. CGI-128 (syn-
onyms: FAM96B, MIP18) plays a role in chromosome
segregation during mitosis. An abnormality here can
contribute to the pathogenesis of the genomic structure
[44]. SNTB2 belongs to the molecular family of syn-
trophins, where the family member SNTA1 is discussed
as a diagnostic or prognostic marker in oesophageal
and breast cancers [45]. SNTB2 is known to be a
Cdk5 substrate that controls the motility of secretory
granules [46]. SF3B3 (spliceosome-associated subunit,
130 kDa) function effects the regulation of vascu-
lar endothelial growth factor (VEGF ) mRNA [47].
VEGF is a regulatory element in tumour angiogene-
sis and mRNA processing, such as alternative splicing.
KIAA0174 (synonym: hIST1) [48] is again part of
the cytokinesis. GABA(A) receptor-associated protein-
like 2 (GABARAPL2) seems to be active at certain
developmental stages [49]. The family member L1
plays a role in conjunction with Atg4D in autophago-
some formation, a process linked to staurosporine-
induced cell death [50]. MBTPS1 (membrane-bound
transcription factor site-1 protease) is discussed by
Brandl et al [51] to be linked via ATF6a to ER
stress response programmes, which in case of malfunc-
tion might induce inflammation. TERF2IP and other
genes residing on 16q have been recently sequenced
in a series of breast cancer cases without any evi-
dence of mutations [52]. This overview on the affected
core functionalities–foremost the second to last–show
how 16q alterations might initiate a cellular state to
acquire further defects and promote tumour progres-
sion. However, the diversity of biological functions
associated with the candidate genes again underlines
the often observed multi-causal nature of cancer phe-
notypes. Several simultaneously deregulated cellular
subnetworks build the stress scenario to initiate tumour
pathogenesis [53].

Although these results require verification and muta-
tions of the respective candidate genes have to be
excluded, the old hypothesis of a mere gene dosage
effect mediating the loss of chromosome 16q should
be discussed more intensely and these results might
also be regarded as hints to discuss the haploinsuffi-
ciency theory in more detail. The effect of haploin-
sufficiency is associated with the loss of one allele of
a specific gene in a tumour cell, whereas the other
allele maintains only <50% of the expression of this
gene, leading to a decreased overall expression (gene
dosage) in the tumour cell. Dosage sensitivity has been
implicated in tumourigenesis, especially for cell-cycle
regulatory genes such as p53 and p27, but also for
other genes [54]. However, a constant feature of hap-
loinsufficient genes is that tumours generated via this
mechanism are of later onset and less severity. In addi-
tion, haploinsufficiency has been associated with an
early stage of the respective disease. For some genes
also a pathway-specific haploinsufficiency effect has
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been described. The parallels between these obser-
vations and the findings in breast cancer are com-
pelling.

In conclusion, whole-arm loss of 16q has a strong
impact on the expression of genes located on 16q in
ER-positive breast cancer in a gene dosage-dependent
manner, allowing a new round in the hunt for 16q-
specific tumour suppressor genes in invasive breast
cancer and its precursor lesions.
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