TEClass and TEClass2 TE classification using machine learning

Wojciech Makałowski **University of Münster, Münster, Germany** Adam Mickiewicz University, Poznań, Poland

EMBO Practical Course, 12 – 16 May 2025 Didcot, United Kingdom

Classification Problem

Typical Annotation Pipeline RepeatModeler

- Step 1: Start With a Good Genome Assembly
- Step 2: Build a Repeat Database
- Step 3: Discover Repeat Families
- Step 4: Classify Repeat Families
- Step 5: Create a Custom Repeat Library
- Step 6: Annotate the Genome using the Library

Typical Annotation Pipeline RepeatModeler

- Step 1: Start With a Good Genome Assembly Step 2: Build a Repeat Database Step 3: Discover Repeat Families Step 4: Classify Repeat Families
 - 0
 - Assigns families to categories: DNA transposons, LTR retrotransposons, LINEs, SINEs, etc. 0
 - Unclassified repeats are labeled as Unknown.

Uses homology-based approaches against existing repeat databases (e.g. Dfam, Repbase if available).

Over Eighty Per Cent Of Models Can Be Classified As "Unknown" by Repeat Modeler

Three different cultivars of Medicago truncatula

Data courtesy of Paulina Poniatowska-Rynkiewicz, Institute of Bioorganic Chemistry PAS, Poland

	<i>HM266</i>	HM257	HM315
Classified	403	447	398
Unknown	1912	2087	1917
Total	2315	2534	2315
Unknown fraction	0.83	0.82	0.83

Up To Eighty Per Cent Of Models Can Be Classified As "Unknown" by **Repeat Modeler FishTEDB** example https://www.fishtedb.com/

Type Unknown - 7.6%

Machine Learning To the Rescue

TECLASS The original - developed by György Abrusán around 2008

TEclass Id Title File Reverse Complement ✓ Text Run Fill Testcase Reset

Abrusan G, Grundmann N, DeMeester L, Makalowski W 2009. Bioinformatics 25:1329-1330

TEclass https://bioinformatics.uni-muenster.de/tools/teclass/index.hbi

TEclass employs three distinct machine learning classifiers to categorize unknown eukaryotic transposable elements (TEs) into four primary functional categories: DNA transposons, LTR retrotransposons, LINEs, and SINEs. These are:

- Additionally, ORFs are being predicted as well.

• Support Vector Machines (SVM): Utilizing the libsym library with a Gaussian (RBF) kernel, SVMs are applied across various sequence length categories. (https://www.csie.ntu.edu.tw/~cjlin/libsvm/)

 Random Forests: An ensemble learning method that constructs multiple decision trees during training and outputs the mode of the classes for classification. (https://mtv.ece.ucsb.edu/benlee/librf.html)

• Learning Vector Quantization (LVQ): A prototype-based supervised classification algorithm that represents each class by a set of prototypes. (http://www.cis.hut.fi/research/lvg_pak/README)

TEclass https://bioinformatics.uni-muenster.de/tools/teclass/index.hbi

600 bp, 601–1800 bp, 1801–4000 bp, and over 4000 bp. The classification process follows a hierarchical approach:

- Orientation Determination: Forward versus reverse sequence orientation.
- Class Differentiation: DNA transposons versus retrotransposons.
- Retrotransposon Subclassification: LTR versus non-LTR elements.
- Non-LTR Subclassification: LINEs versus SINEs (applied only to sequences) shorter than 1800 bp).

The classifiers are trained separately for different sequence length categories: 50 –

TEclass performs a hierarchical binary classification

TEclass - disadvantages

- Hierarchical classification causes accuracy drop with each step
- Last model update May 2016
- Only major categories of TEs are predicted

TEclass - a side note 😂 **Bioinformatics 25:1329-1330**

One of the reviewers: The abilities of TEclass to detect and annotate transposable elements are very limited - it does not allow detection of multiple elements within the sequence (only one TE class is reported), and it does not report position of the element within the sequence. In my opinion, when a researcher already has a consensus sequence or a copy of TE extracted from a genomic sequence, it is usually quite easy to recognize the element type (e.g. based on its structure, coding regions, and other properties), so it is not necessary to use any program for this task. There might be a need for such classification in some unsupervised genome annotation pipelines, but a web-based tool is of no use for this purpose; a stand-alone program would be needed instead. Thus, I could not see in which aspect the TEclass outperforms other methods of TE detection.

Today: 356 citations (Google Scholar), 251 (Web of Science) In the last 2755 days TEclass web site was accessed 568,678 times

Hands On!

You can access the program here: https://www.bioinformatics.uni-muenster.de/tools/teclass/generate/index.pl

Input data can be taken from here: https://www.bioinformatics.uni-muenster.de/share/EMBO_course/

TEclass2 **Developed by Lucas Bickmann in 2008 (Master Thesis)**

Improvements over TEclass

- Classification into sixteen TE superfamilies
- Modern machine learning architecture
- Much larger training dataset based on Dfam
- Probabilistic output provides softmax scores for each TE category

L Bickmann, M Rodriguez, X Jiang, W Makalowski - https://doi.org/10.1101/2023.10.13.562246

TEclass2 Is Using Linear Transformer

Vaswani et al. (Google Brain & University of Toronto) 2017 Attention Is All You Need

- Introduced the Transformer architecture.
- Replaced traditional RNNs (Recurrent Neural Networks) and CNNs (Convolutional Neural Networks) for sequence modeling.
- Based on a novel mechanism: self-attention, which lets the model weigh the importance of different words in a sequence, regardless of their position.

Result: Faster training, better performance on tasks like machine translation

Transformer - Basic Idea According to ChatGPT

A Transformer is a type of computer program that's really good at handling sequences of stuff — like sentences, DNA, or protein sequences. It was first designed for translating languages but now it's used for everything from writing poetry to predicting protein shapes.

How Does It Work?

Imagine you're reading a sentence. As a human, you naturally keep track of the meaning of earlier words while you read new ones. A Transformer does something similar using a clever technique called *attention*.

Transformer - Attention According to ChatGPT

Attention means:

"When looking at one word (or letter, or amino acid), pay attention to other important parts of the sequence too."

So instead of reading a sentence one word at a time like older programs did, a Transformer looks at the whole thing at once, figuring out which parts matter most to each other.

TEclass2 Flowchart

TEclass2 Training

Group Copia Crypton ERV Gypsy hAT Helitron Jockey L1/L2Maverick Merlin P Pao RTE SINE TcMar Transib **Total:**

Train	Valid	Test	Total
18584	3717	2478	24779
5453	1091	727	7270
61539	12319	8212	82124
79674	15935	10623	106232
114707	22941	15294	152943
48980	9796	6531	65307
14201	2840	1894	18935
113708	22742	15161	151610
7218	1444	962	9624
2971	594	396	3961
4692	938	626	6256
22192	4438	2959	29589
43500	8700	5800	58000
31960	6392	4261	42613
86925	17385	11590	115900
4279	856	571	5705
660636	132127	88085	880848

Sequence Augmentation used by TEclass2

Augmentation	Description
SNP	Replace a single nu
Masking	Replaces bases wit
Insertion	Inserts a random se
Deletion	Deletes a random p
Repeat	Repeats a random
Reverse	Reverses the seque
Complement	Computes the com
Reverse complement	Computes the opp
Add tail	Adds a poly-A-tail t
Remove tail	Removes a poly-A-

- ucleotide with a random other nucleotide
- th ambiguity (AGTC \rightarrow N)
- equence
- part of the sequence
- part of the sequence at another following random position
- ence
- plement sequence
- osing strand representation
- to the end of the sequence
- -tail at the end of the sequence if present

TEclass2 Performance

Copia	2271	9	102	281	116	46	133	52	19	30	103	92	57	177	14	214			
Crypton	- 6	752	15	18	28	5	22	7	4	7	5	8	20	87	2	104	- 17500		
ERV	- 36	14	11239	157	53	39	243	8	4	6	21	97	168	87	1	145			
Gypsy	405	48	642	10958	375	373	461	173	28	68	653	405	195	586	25	539	- 15000		
Helitron	- 62	39	42	166	7808	53	197	72	22	-58	78	151	236	386	28	398			
Jockey	- 11	3	23	109	40	2093	185	16	8	8	38	151	38	76	5	36	- 12500)	
L1_L2	127	60	461	349	358	491	18408	112	34	75	134	559	484	511	19	559			
Maverick	- 25	7	13	68	62	24	53	931	2	14	22	39	17	97	4	65	- 1000		
P Merlin	- 8	5	1	6	15	2	9	5	422	3	5	8	2	51	4	47			
P	4	9	15	22	48	5	28	10	10	509	12	11	20	102	5	127	- 7500		
Pao	- 67	11	38	370	82	100	106	33	8	24	31.33	119	30	198	7	112			
RTE	- 56	19	131	129	191	147	369	42	16	30	61	6843	268	219	13	166	- 5000		
SINE	- 26	21	163	53	189	40	180	26	8	16	15	157	5203	130	4	160			AND
TcMar	105	113	135	223	470	119	356	82	56	129	139	271	278	373	105	1066	- 2500		
Transib	- 3	3	2	12	32	8	3	2	3	7	10	7	2	91	621	49			
hAT	140	115	285	294	530	87	442	78	83	155	104	212	328	1105	63	18920			
	Copia	Crypton -	ERV	Gypsy	Helfuon	Jockey	สาท	Maverick	Merlin	d	Pao	RIFE	SINC	TcMar	Transib	hAT			

Flatted Local Attention Heat-Plot Showing relative importance of each token in their neighboring regions

TEclass2 - Very Simple Interface

File	9	
Se	quence	
Da	ta	
		Run Fill
	6	
	× 1.7	
	3	
ALL ALL		
	A STATE AND A STAT	

TEclass2

To run a TEclass2 request: please enter either a file or type/copy the sequence data in FASTA format into the "Sequence Data" field.

Testcase Reset

TEclass2 output - probability

Select a probability for filtering results: 0.7 \$

name	order	class	pro
rnd-1_family-416	Class_I-LTR	Gypsy	0.9
LTR/Gypsy			

Here probability is calculated as "softmax"

- 1. Compute Scores
- 2. Scale the Scores
- between 0 and 1). These probabilities always sum up to 1.

If the best probability is below the threshold (e.g. 0.7) the sequence is called "Unknown"

3. Apply Softmax - scaled scores are converted into probabilities (values

Back To Medicago Case After manual curation

	HM266
d	403
n	1912
d	814
n	123
n	44

TEclass2 - Access Statistics - Last 322 Days

Top ten countries

The Final Thought on Transformer https://arxiv.org/abs/2002.05202v1 by Noam Shazeer

4 Conclusions

We have extended the GLU family of layers and proposed their use in Transformer. In a transfer-learning setup, the new variants seem to produce better perplexities for the de-noising objective used in pre-training, as well as better results on many downstream language-understanding tasks. These architectures are simple to implement, and have no apparent computational drawbacks. We offer no explanation as to why these architectures seem to work; we attribute their success, as all else, to divine benevolence.

Hands On!

You can access the program here: https://bioinformatics.uni-muenster.de/tools/teclass2/index.pl

Input data can be taken from here: https://www.bioinformatics.uni-muenster.de/share/EMBO_course/

Expected Results Dataset 1

Classification by	123	80	138	222	231	233	234	324	10321	28
RepeatModeler	Unkn	Unkn	Unkn	Unkn	Unkn	Unkn	Unkn	Unkn	Unkn	Un
Manual curation	Unkn	LTR/ Copia	SINE/ tRNA	DNA/hAT	Unkn	RC/ Helitron	Unkn	DNA/hAT	Unkn	SINE
TEclass	LINE	LTR	SINE	DNA	LTR	Retro	LTR	Retro	LTR	SIN
TEclass2	LTR/ Gypsy	LTR/ Copia	SINE	DNA/hAT	LTR/ Gypsy	Unkn	LTR/ Copia	Unkn	LTR/ Copia	Un

Expected Results Dataset 2

Classification by	Human Alu-Sx	Rattus L1	DF00000 1406.2	DF00028 9984.2	DF00028 9985.2	DF00028 9992.2	DF00029 0020.2	Tequ_3	Gnip_22	api_
Dfam or GenBank	Alu-Sx	L1	Helitron	Unkn	Unkn	Unkn	Unkn	LINE	Gypsy	Gyp
TEclass	SINE	LINE	DNA	SINE	Retro	LTR	LTR	LTR	LINE	LT
TEclass2	SINE	L1_L2	Helitron	Unkn	Gypsy	ERV	Gypsy	Jockey	Gypsy	Gyp

