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Introduction

The biogenesis and proper function of mitochondria require an import
of 90-99% of mitochondrial proteins as well as a metabolite exchange
with cytoplasm. These transport processes are initiated by proteins from
the mitochondrial outer membrane that display channel activity, namely
VDAC, Tom40, and Sam50/Tob55 (Figure 1). VDAC (voltage-dependent
anion-selective channel), known also as mitochondrial porin, supports the
flux of metabolites. Sam50/Tob55 is a crucial component of the SAM/TOB
complex (sorting and assembly machinery/topogenesis of the
mitochondrial outer membrane [3-barrel proteins), essential for insertion
of B3-barrel integral proteins into the mitochondrial outer membrane.
Tom40 is a core component of the TOM complex (translocase of the
mitochondrial outer membrane) that is regarded as a general entry gate
for mitochondria and as the complex responsible for decoding of targeting
signals, translocation of imported proteins across or into the outer

membrane, and their subsequent sorting.
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Fig. 1: Mitochondrial outer membrane import machinery (model from yeast).
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Protein substrates translated on cytoplasmic ribosomes are targeted to the
TOM complex and subsequently sorted and directed to the outer membrane,
inner membrane or matrix. Ions and small molecules like ATP and NADH
cross mitochondrial outer membrane through the VDAC channel.

VDAC, Tom40, and Sam50/Tob55 are predicted to have a BB-barrel
topology that is characteristic for proteins present in outer membranes
of Gram-negative bacteria and in the organelles of endosymbiotic origin
(i.e. mitochondria and chloroplasts), so their presence in the organellar
outer membrane reflects the evolutionary origin of mitochondria and
chloroplasts from endosymbiotic bacteria. In this study we focused on
the amoeba Acanthamoeba castellanii’s and the slime mold
Dictyostelium discoideum’s outer membrane -barrels. Till now only
Tom40 and VDAC of D. discoideum have been identified.The aim of this
study was to identify Sam50/Tob55 of D. discoideum, as well as VDAC,
Tom40, and Sam50/Tob55 of A. castellanii and use them to perform
comprehensive analysis of the evolutionary history of mitochondrial
outer membrane channels of a predicted B-barrel topology. Both
microorganism are currently classified as amoebozoans - a sister group
of fungi and Metazoa, which diverged from the animal/fungal line after
its split from plants. They present common features to both lineages,
alike in their mitochondrial physiology as well as protein repertoire.
For these reasons, results of our phylogenetic studies might aid the
verification of the position of A. castellanii, D. discoideum, and other

amoebozoans on the eukaryotic tree of life.

Methods
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Fig. 2: Evolutionary relationships of 184 VDAC protein sequences based on
Maximum likelihood analysis. Colors key: red — Amoebozoa, blue — Metazoa
(Ophistokonta), light blue — Choanomonada (Ophistokonta), violet —
Mesomycetozoa (Ophistokonta), brown — Fungi (Ophistokonta), green —

Chloroplastida (Archeplastida), light green — Glaucophyta (Archeplastida), orange

— Chromalveolata, grey — Excavata, yellow — Rhizaria. Colored leaf ranges denote
three subclades created by three vertebrate VDAC isoforms. Filled black circles
represent bootstrap values of 70% and above.
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Results

We managed to verify the previously discovered genes for VDAC and
Tom40 in the D. discoideum's genome and identified the remaining Sam50/
Tobb55 sequence that encoded for a 396 amino acid long protein. In the
amino acid sequence it presented greater similarity to animal (e.g. human,
chicken) than to fungal or plant counterparts. Search for protein domains
detected the Bac_surface_Ag protein domain and because it was identified
in all well annotated animal, fungal or plant Sam50/Tob55 sequences, the
finding provided additional support that the identified sequence is a true
ortholog. Protein was also predicted to be able to form transmembrane
B-strands, which is a crucial feature of membrane B-barrel proteins.

The dataset collected for phylogeny contained the mitochondrial outer
membrane B-barrels from 157 species and it consisted of 84, 124, and 184

protein sequences of Sam50/Tob55, Tom40, and VDAC, respectively (see
the Table below).

Table 1. Distribution of the analyzed mitochondrial outer membrane B-barrels

among the six eukaryotic supergroups.

Supergroup # of species Sam50 Tom40 VDAC
Amoebozoa 7 3 6 5
Ophisthokonta 89 29 79 110
Archeplastida 32 12 16 51
Chromalveolata 20 7 19 11
Excavata 8 1 3 7
Rhizaria 1 0 1 0

157 84 124 184

As shown in Figure 2, VDACs from A. castellanii and D. discoideum,
and other representatives of Amoebozoa group together, however, we do
not observe a well defined monophyletic clade - they also cluster together
with apicomplexans and haptophytes (Chromalveolata group). Sam50/
Tob55 sequence of A. castellanii identified in this study clusters to plants
in a basal position (Figure 3). It is grouped between representativesof
plants and haptophytes and stramenopiles (Chromalveolata). Other
individuals from the Amoebozoa supergroup, including D. discoideum, are
located between fungal and animal lineages and grouped with
representatives of Excavata and Alveolata (Chromalveolata). Amoebozoan
Tom40 sequences set between plant and Chromalveolata/Excavata
lineages (Figure 4). Tom40 of A. castellanii apears basally to the plant
node and grous together with sequences of haptophytes. Dictyostelium’s
sequence is clustered with Tom40 sequences of Rhizaria and
Cryptophycae (Chromalveolata). The obtained arrangement of clades
appears to support only two eukaryotic supergroups - Ophisthokonta and
Archeplastida. In all trees the internal nodes, that bear on validity of the
supergroups, present low bootstrap values, while the external ones that
group closely related species are rather well supported.

Conclusions

In contrast to animals or plants, where many duplication events took
place during the evolution of mitochondrial outer membrane B-barrels,
among the analyzed Amoebozoa species, including A. castellanii and
D. discoideum, no duplication occured and only single genes for VDAC,
Tom40, and Sam50/Tob55 evolved, indicating no need for for a transport

Fig. 3: Maximum likelihood tree of 84 Sam50/Tob55 protein sequences. Colors as

described for Figure 2. Filled black circles represent bootstrap values of 70% and

function innovation.
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Fig. 4: Maximum likelihood tree of 124 Tom40 amino acid sequences. Colors as

described for Figure 2. Colored leaf ranges denote two subclades created by two

vertebrate Tom40 isoforms. Filled black circles represent bootstrap values of 70%
and above.

Support values for trees assessed with 1000 bootstrap replicates.
Likelihood values of final trees evaluated and optimized under

PROTGAMMA with four gamma-distributed discrete rate categories.
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